Rankings for Bipartite Tournaments via Chain Editing

Joe Singleton and Richard Booth October 2020

Bipartite tournaments

- **Tournament:** set of players together with pairwise comparisons between them
- Ranking has many applications: e.g. sports (chess, football), voting...
- We look at bipartite tournaments

- Need two rankings: one for each side
- e.g. $a_2 \simeq a_3 \prec a_1$, $b_1 \simeq b_2$

Motivating example: an educational setting

• Primary example: students and exam questions

- Ranking of the students: who performed best on the exam?
- · Ranking of the questions: which questions were most difficult?
- Student ranking can depend on difficulty
 - Useful if questions are crowdsourced from students themselves (e.g. PeerWise system)

Formal model

Ranking via chain editing

Relaxing chain editing

Conclusion and future work

Formal model

Formal model

Definition

A bipartite tournament is a triple (A, B, K) where

- $A = \{1, \ldots, m\}$ for some $m \in \mathbb{N}$
- $B = \{1, \ldots, n\}$ for some $n \in \mathbb{N}$
- *K* is an $m \times n$ matrix with $K_{ab} \in \{0, 1\}$ for all a, b
- $K_{ab} = 1$ if a defeats b; $K_{ab} = 0$ otherwise (no draws)
- Every $a \in A$ plays against every $b \in B$

Example

$$\mathbf{A} = \{1, 2, 3\}, \qquad \mathbf{B} = \{1, 2, 3, 4\}, \qquad \mathbf{K} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

Definition

A ranking operator φ assigns to each tournament *K* a pair of total preorders $(\preceq_{K}^{\varphi}, \preceq_{K}^{\varphi})$ on *A* and *B* respectively

- $\cdot a_1 \underline{\prec}^{\varphi}_{k} a_2$ means a_2 is ranked at least as strong as a_1
- $b_1 \preceq^{\varphi}_{\kappa} b_2$ interpreted similarly
- Note: ties allowed

Ranking via chain editing

- $\cdot\,$ Suppose there is a 'true' ranking of A and B
- In an ideal world: results are nested

- Tournament is a chain graph: neighbourhoods form a chain w.r.t set inclusion
- Ranking can be recovered from the neighbourhoods

- $\cdot\,$ Suppose there is a 'true' ranking of A and B
- In an ideal world: results are nested

- Tournament is a chain graph: neighbourhoods form a chain w.r.t set inclusion
- Ranking can be recovered from the neighbourhoods

- Suppose there is a 'true' ranking of A and B
- In an ideal world: results are nested

- Tournament is a chain graph: neighbourhoods form a chain w.r.t set inclusion
- Ranking can be recovered from the neighbourhoods

- Suppose there is a 'true' ranking of A and B
- In an ideal world: results are nested

- Tournament is a chain graph: neighbourhoods form a chain w.r.t set inclusion
- Ranking can be recovered from the neighbourhoods

- Suppose there is a 'true' ranking of A and B
- In an ideal world: results are nested

- Tournament is a chain graph: neighbourhoods form a chain w.r.t set inclusion
- Ranking can be recovered from the neighbourhoods

- Suppose there is a 'true' ranking of A and B
- In an ideal world: results are nested

- Tournament is a chain graph: neighbourhoods form a chain w.r.t set inclusion
- Ranking can be recovered from the neighbourhoods

- Suppose there is a 'true' ranking of A and B
- In an ideal world: results are nested

- Tournament is a chain graph: neighbourhoods form a chain w.r.t set inclusion
- Ranking can be recovered from the neighbourhoods

- In reality: mistakes happen
- Idea for a ranking method: make minimal changes to fix these errors and form a chain graph

Definition (Chain Editing)

Given a bipartite graph G = (A, B, E), find a chain graph G' such that $|G \bigtriangleup G'|$ is minimal

- Unfortunately, chain editing is NP-hard
- We partially address this later

- In matrix terms...
- Write $K(a) = \{b \in B \mid K_{ab} = 1\}$ for the players defeated by $a \in A$ (the neighbourhood of a)

Definition (Chain tournament)

K is a chain tournament if for all $a_1, a_2 \in A$, either $K(a_1) \subseteq K(a_2)$ or $K(a_2) \subseteq K(a_1)$

• Write $\mathcal{M}(K) = \arg \min_{K' \text{ chain }} d_H(K, K')$ for the set of chain tournaments closest to K w.r.t the Hamming distance

Example

$$\mathcal{M}\left(\left[\begin{smallmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{smallmatrix}\right) = \left\{\left[\begin{smallmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{smallmatrix}\right], \left[\begin{smallmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{smallmatrix}\right], \left[\begin{smallmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{smallmatrix}\right], \left[\begin{smallmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{smallmatrix}\right]\right\}$$

- Chain editing property for φ :
- chain-min: for every K there is $K' \in \mathcal{M}(K)$ such that

$$a_1 \underline{\prec}^{\varphi}_{K} a_2 \iff K'(a_1) \subseteq K'(a_2)$$

$$b_1 \underline{\prec}^{\varphi}_{K} b_2 \iff (K')^{-1}(b_1) \supseteq (K')^{-1}(b_2)$$

• Note: there is no unique chain-min operator

- **chain-min** was motivated by fixing noise in *K* to find the 'true' ranking
- Can be made precise by maximum likelihood estimation
 - + Define possible states of the world θ
 - Given K, maximise $P(K \mid \theta)$
 - + Output rankings according to heta

The probabilistic model

Definition

A state of the world θ is a pair (x, y) where

- $x = (x_1, \dots, x_{|A|}) \in \mathbb{R}^{|A|}$ and $y = (y_1, \dots, y_{|B|}) \in \mathbb{R}^{|B|}$ are skill levels of players
- some explainability conditions are satisfied...
- **Intuition:** *a* capable of defeating *b* in state θ iff $x_a \ge y_b$
- Noise model:
 - X_{ab} is binary random variable for the outcome between a and b
 - false positive w.p α_+ (if $x_a < y_b$)
 - false negative w.p α_- (if $x_a \ge y_b$)
 - Independent noise:

$$P(K \mid \theta) = \prod_{a,b} P(X_{ab} = K_{ab} \mid \theta)$$

Definition

 φ is an MLE operator if for every K there is $\theta = (x, y)$ such that

- 1. $P(K \mid \theta)$ is maximal
- 2. $a_1 \preceq^{\varphi}_K a_2$ iff $x_{a_1} \leq x_{a_2}$
- 3. $b_1 \preceq^{\varphi}_K b_2$ iff $y_{b_1} \le y_{b_2}$
 - i.e. for each K, find an MLE θ = (x, y), and rank according to x and y

Theorem

If
$$\alpha_+ = \alpha_- < \frac{1}{2}$$
, then

 φ MLE $\iff \varphi$ chain-min

Proof outline:

- **Lemma 1:** θ MLE for K iff $d_H(K, K_{\theta})$ is minimal
- Lemma 2: *K* is a chain tournament iff $K = K_{\theta}$ for some θ
- It follows that $\mathcal{M}(K)$ consists of K_{θ} across all MLEs θ , which implies the result.

(similar results for other values of α_+, α_-)

Relaxing chain editing

- Chain editing has intuitive and theoretical backing, but...
- Two problems: NP-hardness and Anonymity failure
- Can be resolved by removing minimisation requirement in chain editing
- chain-def: for every K there is a chain tournament K' such that

$$a_1 \underline{\prec}_{K}^{\varphi} a_2 \iff K'(a_1) \subseteq K'(a_2)$$

$$b_1 \underline{\prec}_{K}^{\varphi} b_2 \iff (K')^{-1}(b_1) \supseteq (K')^{-1}(b_2)$$

Theorem

```
|\operatorname{ranks}(\underline{\prec}_{k}^{\varphi}) - \operatorname{ranks}(\underline{\prec}_{k}^{\varphi})| \leq 1
```

- Idea for achieving chain-def: iteratively choose ranks of A and B
- Greedy algorithm for finding a chain graph
- e.g. based on neighbourhood cardinality heuristic:

$$K = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$

Theorem

```
|\operatorname{ranks}(\underline{\prec}_{k}^{\varphi}) - \operatorname{ranks}(\underline{\prec}_{k}^{\varphi})| \leq 1
```

- Idea for achieving chain-def: iteratively choose ranks of A and B
- Greedy algorithm for finding a chain graph
- e.g. based on neighbourhood cardinality heuristic:

$$K = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$
$$\preceq^{\varphi}_{K} : 1 \qquad \preceq^{\varphi}_{K} : 1$$

Theorem

```
|\operatorname{ranks}(\underline{\prec}_{k}^{\varphi}) - \operatorname{ranks}(\underline{\prec}_{k}^{\varphi})| \leq 1
```

- Idea for achieving chain-def: iteratively choose ranks of A and B
- Greedy algorithm for finding a chain graph
- e.g. based on neighbourhood cardinality heuristic:

$$K = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$
$$\preceq^{\varphi}_{K} : 1 \qquad \preceq^{\varphi}_{K} : 1$$

Theorem

```
|\operatorname{ranks}(\underline{\prec}_{k}^{\varphi}) - \operatorname{ranks}(\underline{\prec}_{k}^{\varphi})| \leq 1
```

- Idea for achieving chain-def: iteratively choose ranks of A and B
- Greedy algorithm for finding a chain graph
- e.g. based on neighbourhood cardinality heuristic:

$$K = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$
$$\preceq^{\varphi}_{K} : 3 \prec 1 \qquad \preceq^{\varphi}_{K} : 3 \simeq 4 \prec$$

Theorem

```
|\operatorname{ranks}(\underline{\prec}_{k}^{\varphi}) - \operatorname{ranks}(\underline{\prec}_{k}^{\varphi})| \leq 1
```

- Idea for achieving chain-def: iteratively choose ranks of A and B
- Greedy algorithm for finding a chain graph
- e.g. based on neighbourhood cardinality heuristic:

$$K = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$
$$\preceq^{\varphi}_{K} : 3 \prec 1 \qquad \preceq^{\varphi}_{K} : 3 \simeq 4 \prec$$

Theorem

```
|\operatorname{ranks}(\underline{\prec}_{k}^{\varphi}) - \operatorname{ranks}(\underline{\prec}_{k}^{\varphi})| \leq 1
```

- Idea for achieving chain-def: iteratively choose ranks of A and B
- Greedy algorithm for finding a chain graph
- e.g. based on neighbourhood cardinality heuristic:

$$K = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$
$$\leq_{K}^{\varphi} : 2 \prec 3 \prec 1 \qquad \leq_{K}^{\varphi} : 5 \prec 3 \simeq 4 \prec 1$$

Theorem

```
|\operatorname{ranks}(\underline{\prec}_{k}^{\varphi}) - \operatorname{ranks}(\underline{\prec}_{k}^{\varphi})| \leq 1
```

- Idea for achieving chain-def: iteratively choose ranks of A and B
- Greedy algorithm for finding a chain graph
- e.g. based on neighbourhood cardinality heuristic:

$$K = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$
$$\preceq^{\varphi}_{K} : 2 \prec 3 \prec 1 \qquad \preceq^{\varphi}_{K} : 5 \prec 3 \simeq 4 \prec 1$$

Theorem

```
|\operatorname{ranks}(\underline{\prec}_{K}^{\varphi}) - \operatorname{ranks}(\underline{\prec}_{K}^{\varphi})| \leq 1
```

- Idea for achieving chain-def: iteratively choose ranks of A and B
- Greedy algorithm for finding a chain graph
- e.g. based on neighbourhood cardinality heuristic:

$$K = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$
$$\preceq^{\varphi}_{K} : 4 \prec 2 \prec 3 \prec 1 \qquad \preceq^{\varphi}_{K} : 2 \prec 5 \prec 3 \simeq 4 \prec 1$$

Theorem

```
|\operatorname{ranks}(\underline{\prec}_{K}^{\varphi}) - \operatorname{ranks}(\underline{\prec}_{K}^{\varphi})| \leq 1
```

- Idea for achieving chain-def: iteratively choose ranks of A and B
- Greedy algorithm for finding a chain graph
- e.g. based on neighbourhood cardinality heuristic:

$$K = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$
$$\preceq^{\varphi}_{K} : 4 \prec 2 \prec 3 \prec 1 \qquad \preceq^{\varphi}_{K} : 2 \prec 5 \prec 3 \simeq 4 \prec 1$$

• Iteratively choosing ranks can be generalised: we call such operators interleaving operators

Theorem

 φ satisfies chain-def if and only if φ is an interleaving operator

· Cardinality-based example:

- Polynomial time:
- Anonymity: 🗸

Conclusion and future work

So far...

- We studied chain editing for ranking bipartite tournaments
- Obtained a maximum likelihood interpretation
- Resolved computational difficulties by relaxing to **chain-def**

In the future...

- Allow draws and abstentions
- Approximation algorithms for chain editing
- Experimental analysis