
Rankings for Bipartite Tournaments via Chain
Editing

Joe Singleton and Richard Booth
October 2020

Bipartite tournaments

• Tournament: set of players together with pairwise comparisons
between them

• Ranking has many applications: e.g. sports (chess, football),
voting…

• We look at bipartite tournaments

a1

a2

a3

b1

b2

• Need two rankings: one for each side
• e.g. a2 ≃ a3 ≺ a1, b1 ≃ b2

1

Motivating example: an educational setting

• Primary example: students and exam questions

s1

s2

s3

q1

q2

q3

q4

(students) (questions)

• Ranking of the students: who performed best on the exam?
• Ranking of the questions: which questions were most difficult?
• Student ranking can depend on difficulty

• Useful if questions are crowdsourced from students themselves
(e.g. PeerWise system)

2

Outline

Formal model

Ranking via chain editing

Relaxing chain editing

Conclusion and future work

3

Formal model

Formal model

Definition
A bipartite tournament is a triple (A,B, K) where

• A = {1, . . . ,m} for some m ∈ N

• B = {1, . . . ,n} for some n ∈ N

• K is an m× n matrix with Kab ∈ {0, 1} for all a,b

• Kab = 1 if a defeats b; Kab = 0 otherwise (no draws)
• Every a ∈ A plays against every b ∈ B

Example

A = {1, 2, 3}, B = {1, 2, 3, 4}, K =

1 0 1 0
1 1 0 0
0 1 1 1


4

Formal model (contd.)

Definition
A ranking operator φ assigns to each tournament K a pair of total
preorders (⪯φ

K ,⪯
φ
K) on A and B respectively

• a1⪯φ
K a2 means a2 is ranked at least as strong as a1

• b1⪯φ
K b2 interpreted similarly

• Note: ties allowed

5

Ranking via chain editing

Chain graphs

• Suppose there is a ‘true’ ranking of A and B
• In an ideal world: results are nested

s1 ≺ s2 ≺ s3
q1 ≺ q2 ≺ q3 ≃ q4

=⇒

s1

s2

s3

q1

q2

q3

q4

• Tournament is a chain graph: neighbourhoods form a chain w.r.t
set inclusion

• Ranking can be recovered from the neighbourhoods

6

Chain graphs

• Suppose there is a ‘true’ ranking of A and B
• In an ideal world: results are nested

s1 ≺ s2 ≺ s3
q1 ≺ q2 ≺ q3 ≃ q4

=⇒

s1

s2

s3

q1

q2

q3

q4

• Tournament is a chain graph: neighbourhoods form a chain w.r.t
set inclusion

• Ranking can be recovered from the neighbourhoods

6

Chain graphs

• Suppose there is a ‘true’ ranking of A and B
• In an ideal world: results are nested

s1 ≺ s2 ≺ s3
q1 ≺ q2 ≺ q3 ≃ q4

=⇒

s1

s2

s3

q1

q2

q3

q4

• Tournament is a chain graph: neighbourhoods form a chain w.r.t
set inclusion

• Ranking can be recovered from the neighbourhoods

6

Chain graphs

• Suppose there is a ‘true’ ranking of A and B
• In an ideal world: results are nested

s1 ≺ s2 ≺ s3
q1 ≺ q2 ≺ q3 ≃ q4

=⇒

s1

s2

s3

q1

q2

q3

q4

• Tournament is a chain graph: neighbourhoods form a chain w.r.t
set inclusion

• Ranking can be recovered from the neighbourhoods

6

Chain graphs

• Suppose there is a ‘true’ ranking of A and B
• In an ideal world: results are nested

s1 ≺ s2 ≺ s3
q1 ≺ q2 ≺ q3 ≃ q4

=⇒

s1

s2

s3

q1

q2

q3

q4

• Tournament is a chain graph: neighbourhoods form a chain w.r.t
set inclusion

• Ranking can be recovered from the neighbourhoods

6

Chain graphs

• Suppose there is a ‘true’ ranking of A and B
• In an ideal world: results are nested

s1 ≺ s2 ≺ s3
q1 ≺ q2 ≺ q3 ≃ q4

=⇒

s1

s2

s3

q1

q2

q3

q4

• Tournament is a chain graph: neighbourhoods form a chain w.r.t
set inclusion

• Ranking can be recovered from the neighbourhoods

6

Chain graphs

• Suppose there is a ‘true’ ranking of A and B
• In an ideal world: results are nested

s1 ≺ s2 ≺ s3
q1 ≺ q2 ≺ q3 ≃ q4

=⇒

s1

s2

s3

q1

q2

q3

q4

• Tournament is a chain graph: neighbourhoods form a chain w.r.t
set inclusion

• Ranking can be recovered from the neighbourhoods

6

Chain graphs (contd.)

• In reality: mistakes happen
• Idea for a ranking method: make minimal changes to fix these
errors and form a chain graph

Definition (Chain Editing)
Given a bipartite graph G = (A,B, E), find a chain graph G′ such that
|G △ G′| is minimal

• Unfortunately, chain editing is NP-hard
• We partially address this later

7

Chain editing on tournaments

• In matrix terms…
• Write K(a) = {b ∈ B | Kab = 1} for the players defeated by a ∈ A
(the neighbourhood of a)

Definition (Chain tournament)
K is a chain tournament if for all a1,a2 ∈ A, either K(a1) ⊆ K(a2) or
K(a2) ⊆ K(a1)

• WriteM (K) = arg minK′ chain dH(K, K′) for the set of chain
tournaments closest to K w.r.t the Hamming distance

Example

M
([1 0 1 0

1 1 0 0
0 1 1 1

])
=

{[1 1 1 0
1 1 0 0
1 1 1 1

]
,
[1 0 0 0
1 1 0 0
1 1 1 1

]
,
[1 0 1 0
1 0 0 0
1 1 1 1

]
,
[1 0 1 0
1 1 1 0
1 1 1 1

]}
8

Chain-minimal operators

• Chain editing property for φ:
• chain-min: for every K there is K′ ∈ M (K) such that

a1⪯φ
K a2 ⇐⇒ K′(a1) ⊆ K′(a2)

b1⪯φ
K b2 ⇐⇒ (K′)−1(b1) ⊇ (K′)−1(b2)

• Note: there is no unique chain-min operator

9

A maximum likelihood interpretation

• chain-min was motivated by fixing noise in K to find the ‘true’
ranking

• Can be made precise by maximum likelihood estimation
• Define possible states of the world θ

• Given K, maximise P(K | θ)
• Output rankings according to θ

10

The probabilistic model

Definition
A state of the world θ is a pair (x, y) where

• x = (x1, . . . , x|A|) ∈ R|A| and y = (y1, . . . , y|B|) ∈ R|B| are skill levels
of players

• some explainability conditions are satisfied…

• Intuition: a capable of defeating b in state θ iff xa ≥ yb
• Noise model:

• Xab is binary random variable for the outcome between a and b
• false positive w.p α+ (if xa < yb)
• false negative w.p α− (if xa ≥ yb)
• Independent noise:

P(K | θ) =
∏
a,b

P(Xab = Kab | θ)

11

Maximum likelihood operators

Definition
φ is an MLE operator if for every K there is θ = (x, y) such that

1. P(K | θ) is maximal
2. a1⪯φ

K a2 iff xa1 ≤ xa2
3. b1⪯φ

K b2 iff yb1 ≤ yb2

• i.e. for each K, find an MLE θ = (x, y), and rank according to x
and y

12

MLE and chain-min

Theorem
If α+ = α− < 1

2 , then

φ MLE ⇐⇒ φ chain-min

Proof outline:

• Lemma 1: θ MLE for K iff dH(K, Kθ) is minimal
• Lemma 2: K is a chain tournament iff K = Kθ for some θ

• It follows thatM (K) consists of Kθ across all MLEs θ, which
implies the result.

(similar results for other values of α+, α−)

13

Relaxing chain editing

Chain definability

• Chain editing has intuitive and theoretical backing, but…
• Two problems: NP-hardness and Anonymity failure
• Can be resolved by removing minimisation requirement in chain
editing

• chain-def: for every K there is a chain tournament K′ such that

a1⪯φ
K a2 ⇐⇒ K′(a1) ⊆ K′(a2)

b1⪯φ
K b2 ⇐⇒ (K′)−1(b1) ⊇ (K′)−1(b2)

14

Characterising chain-def

Theorem
φ satisfies chain-def if and only if for every K:

|ranks(⪯φ
K)− ranks(⪯φ

K)| ≤ 1

• Idea for achieving chain-def: iteratively choose ranks of A and B
• Greedy algorithm for finding a chain graph
• e.g. based on neighbourhood cardinality heuristic:

K =


1 1 1 1 0
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0



15

Characterising chain-def

Theorem
φ satisfies chain-def if and only if for every K:

|ranks(⪯φ
K)− ranks(⪯φ

K)| ≤ 1

• Idea for achieving chain-def: iteratively choose ranks of A and B
• Greedy algorithm for finding a chain graph
• e.g. based on neighbourhood cardinality heuristic:

K =


1 1 1 1 0
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0


⪯φ
K : 1 ⪯φ

K : 1

15

Characterising chain-def

Theorem
φ satisfies chain-def if and only if for every K:

|ranks(⪯φ
K)− ranks(⪯φ

K)| ≤ 1

• Idea for achieving chain-def: iteratively choose ranks of A and B
• Greedy algorithm for finding a chain graph
• e.g. based on neighbourhood cardinality heuristic:

K =


1 1 1 1 0
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0


⪯φ
K : 1 ⪯φ

K : 1

15

Characterising chain-def

Theorem
φ satisfies chain-def if and only if for every K:

|ranks(⪯φ
K)− ranks(⪯φ

K)| ≤ 1

• Idea for achieving chain-def: iteratively choose ranks of A and B
• Greedy algorithm for finding a chain graph
• e.g. based on neighbourhood cardinality heuristic:

K =


1 1 1 1 0
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0


⪯φ
K : 3 ≺ 1 ⪯φ

K : 3 ≃ 4 ≺ 1

15

Characterising chain-def

Theorem
φ satisfies chain-def if and only if for every K:

|ranks(⪯φ
K)− ranks(⪯φ

K)| ≤ 1

• Idea for achieving chain-def: iteratively choose ranks of A and B
• Greedy algorithm for finding a chain graph
• e.g. based on neighbourhood cardinality heuristic:

K =


1 1 1 1 0
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0


⪯φ
K : 3 ≺ 1 ⪯φ

K : 3 ≃ 4 ≺ 1

15

Characterising chain-def

Theorem
φ satisfies chain-def if and only if for every K:

|ranks(⪯φ
K)− ranks(⪯φ

K)| ≤ 1

• Idea for achieving chain-def: iteratively choose ranks of A and B
• Greedy algorithm for finding a chain graph
• e.g. based on neighbourhood cardinality heuristic:

K =


1 1 1 1 0
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0


⪯φ
K : 2 ≺ 3 ≺ 1 ⪯φ

K : 5 ≺ 3 ≃ 4 ≺ 1

15

Characterising chain-def

Theorem
φ satisfies chain-def if and only if for every K:

|ranks(⪯φ
K)− ranks(⪯φ

K)| ≤ 1

• Idea for achieving chain-def: iteratively choose ranks of A and B
• Greedy algorithm for finding a chain graph
• e.g. based on neighbourhood cardinality heuristic:

K =


1 1 1 1 0
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0


⪯φ
K : 2 ≺ 3 ≺ 1 ⪯φ

K : 5 ≺ 3 ≃ 4 ≺ 1

15

Characterising chain-def

Theorem
φ satisfies chain-def if and only if for every K:

|ranks(⪯φ
K)− ranks(⪯φ

K)| ≤ 1

• Idea for achieving chain-def: iteratively choose ranks of A and B
• Greedy algorithm for finding a chain graph
• e.g. based on neighbourhood cardinality heuristic:

K =


1 1 1 1 0
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0


⪯φ
K : 4 ≺ 2 ≺ 3 ≺ 1 ⪯φ

K : 2 ≺ 5 ≺ 3 ≃ 4 ≺ 1

15

Characterising chain-def

Theorem
φ satisfies chain-def if and only if for every K:

|ranks(⪯φ
K)− ranks(⪯φ

K)| ≤ 1

• Idea for achieving chain-def: iteratively choose ranks of A and B
• Greedy algorithm for finding a chain graph
• e.g. based on neighbourhood cardinality heuristic:

K =


1 1 1 1 0
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0


⪯φ
K : 4 ≺ 2 ≺ 3 ≺ 1 ⪯φ

K : 2 ≺ 5 ≺ 3 ≃ 4 ≺ 1

15

Characterising chain-def (contd.)

• Iteratively choosing ranks can be generalised: we call such
operators interleaving operators

Theorem
φ satisfies chain-def if and only if φ is an interleaving operator

• Cardinality-based example:
• Polynomial time: 3

• Anonymity: 3

16

Conclusion and future work

Conclusion and future work

So far…

• We studied chain editing for ranking bipartite tournaments
• Obtained a maximum likelihood interpretation
• Resolved computational difficulties by relaxing to chain-def

In the future…

• Allow draws and abstentions
• Approximation algorithms for chain editing
• Experimental analysis

17

	Formal model
	Ranking via chain editing
	Relaxing chain editing
	Conclusion and future work

