An Axiomatic Approach to Truth Discovery

Joe Singleton November 2019

1

What is Truth Discovery?

- Lots of information is available today, from many different sources
 - \cdot The web
 - Social media platforms (Twitter, Facebook, ...)
 - Crowdsourcing systems
- People often *disagree* with what is true. Who should we trust in this case, and what should we believe?
- **Truth discovery:** find *true facts* and *trustworthy data sources* when faced with conflicting information.
- Core idea: trustworthy sources make believable claims, and believable claims are made by trustworthy sources

- Background and context to the problem
- Existing work in this area
- Our work:
 - Framework for truth discovery
 - Axioms and results
 - Analysis of existing algorithms wrt axioms

Background for truth discovery

- We have a number of *objects* (or *variables*) of interest
 - e.g. real world entities, questions
- *Data sources* claim different *facts* (or *values*) for these objects. 'Facts' can be *conflicting*
- Naive solution: believe the facts claimed by the most sources, i.e. perform a *vote*
- Will this work?
 - Anti-vaccine movement on social media
- It would be better to use *trust* information
 - Trustworthy sources are given more weight
 - Won't get misled by an untrustworthy majority

Existing work

- Resolving conflicts in information is not new
 - Belief revision
 - Belief merging
 - Judgment aggregation
 - Argumentation
 - etc...
- Truth discovery is distinguished by its consideration of trustworthiness
- Many algorithms proposed in recent years
 - Often use statistical methods
 - Mostly *unsupervised*: no ground truths for objects, and no known trustworthiness values

- Many algorithms are opaque difficult to see what the algorithm is actually *doing*
- Have to be evaluated empirically
- It is difficult to compare algorithms
- Would be useful to have some *theory* behind truth discovery: specifically *axioms*

The axiomatic method

- Axiom: a desirable property that any reasonable truth discovery algorithm should satisfy
- Axiomatic method is popular in social choice, judgment aggregation...
- · Common goals are impossibility results and characterisation results
- E.g. voting has Arrow's Impossibility Theorem
 - Three seemingly good axioms cannot hold at the same time
 - Highlights fundamental problem with voting
- E.g. Altman and Tennenholtz ¹ characterised PageRank from Google
 - Found a set of *sound* and *complete* axioms for PageRank
- · Idea: can we give truth discovery an axiomatic treatment?

¹Alon Altman and Moshe Tennenholtz. 2005. Ranking systems: the PageRank axioms.

- Defined a formal framework
- Formulated some axioms
 - Mostly inspired by social choice, JA and ranking systems
- An impossibility and characterisation result along the way
- Had a look at some existing truth discovery algorithms against our axioms

The framework: what is the input to the truth discovery?

- We consider a very basic form of truth discovery
- $\cdot\,$ We have a finite set of sources ${\mathcal S}$, facts ${\mathcal F}$ and objects ${\mathcal O}$
- Input to the problem (the dataset) is called a *truth discovery network*, and is defined as a graph
- We assume each object has a single *true fact* associated with it
- Representing input as a graph is already common in the literature

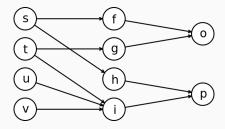


Figure 1: Example truth discovery network

- Outputs are usually numeric trust scores and belief scores
- These are not comparable between algorithms
- Scores induce rankings (tpos), which are comparable
 - Source ranking tells us who is more trustworthy
 - Fact ranking tells us which fact is *more believable*
- Algorithms are represented in the framework as functions, and are called *truth discovery operators*

Network example revisited

• **Question:** what do you think is the most sensible ranking of *f* and *g*? Which fact should we believe?

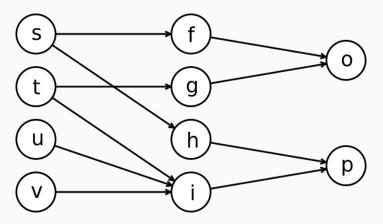


Figure 2: Example network

Network example revisited (II)

• What about in this case?

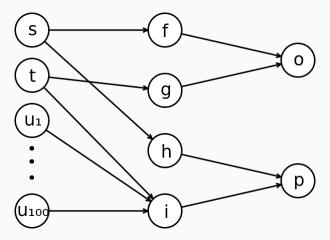


Figure 3: Modified example network

- The framework provides the definitions required to formally state axioms
- Most axioms adapted from social choice
- I will only mention the important ones...

- Axioms are supposed to represent intuitive *desirable properties* of operators
- Key principle of truth discovery: trustworthy sources make believable claims, and vice versa
- The trust and belief rankings need to *cohere* in this sense
- This idea is hard to pin down in general, but we can do so in specific cases...

Coherence (II)

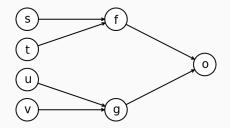


Figure 4: Coherence motivating example

- **Fact-Coherence:** If $s \sqsubset u$ and $t \sqsubset v$ then $f \prec g$
- Source-Coherence: If $f \prec g$ then $s \sqsubset u$
- This idea comes from axiomatic analysis of ranking systems under the name transitivity²
- We consider this the most important axiom

²Alon Altman and Moshe Tennenholtz. 2008. Axiomatic Foundations for Ranking Systems

Symmetry

- Rankings should depend on the *structure* of the network, not the *names* of sources and facts
- Consider swapping s with t and h with i:

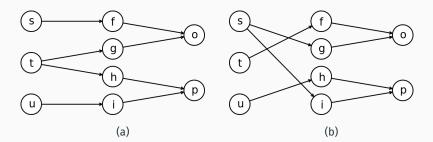


Figure 5: Isomorphic truth discovery networks

Monotonicity

- We don't want Voting, but more support is better in some sense...
- If *f* is at least as believable as *g* and extra support for *f* comes in, *f* should become *strictly* more believable

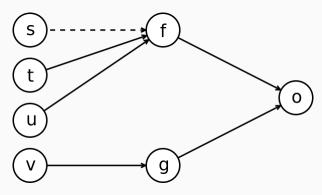


Figure 6: Monotonicity motivating example

• Notion of *independence* is important: the ranking of a source/fact should only depend on the stuff that is relevant to it

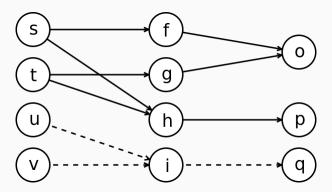


Figure 7: Independence motivating example

• e.g. are *u* and *v* relevant to s?

Per-object Independence (POI)

- First attempt at independence, obtained by translating social choice (esp. voting) version of independence
- If facts and sources for object *o* are the same in *N* and *N'*, the ranking of *o*'s facts is the same

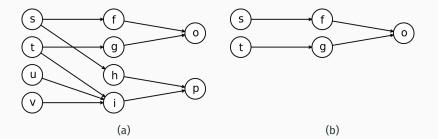


Figure 8: POI example

- POI means we cannot use inter-object links
- With Symmetry and Monotonicity, this is very bad: it implies *Voting* behaviour within the facts for each object

Theorem

Let T be any operator satisfying Symmetry, Monotonicity and POI. Then for any network N, object o and facts f, g for o, we have

$$f \preceq_N^T g \iff |\operatorname{src}_N(f)| \le |\operatorname{src}_N(g)|$$

• In the network below, the previous theorem gives

 $f \approx g$ $h \prec i$

• Note: we cannot say anything about f vs h or g vs i etc...

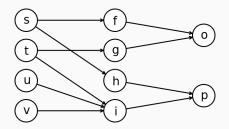


Figure 9: Example network

- Remember Coherence is our key axiom, which Voting fails
- Symmetry, Monotonicity and POI imply Voting-like behaviour
- Symmetry, Monotonicity, POI and Coherence? No

Theorem

There is no operator satisfying Coherence, Symmetry, Monotonicity and POI.

• This is the first impossibility result for truth discovery

- Our first theorem almost characterises the fact ranking of *Voting*. Can POI be strengthened to get a full characterisation?
- Yes. Answer is to ignore objects altogether: the ranking of *f* and *g* depends only on the sources for *f* and *g* (*Strong Independence*)

Theorem

An operator T satisfies Strong Independence, Monotonicity and Symmetry if and only if for any network N and f, $g \in \mathcal{F}$ we have

$$f \preceq_N^T g \iff |\operatorname{src}_N(f)| \le |\operatorname{src}_N(g)|$$

Final Independence axiom

- POI and Strong Independence are *not* desirable
- Our final version of independence is very weak: two nodes are relevant to each other if there is a path between them, i.e. if they are in the same *connected component* of the graph

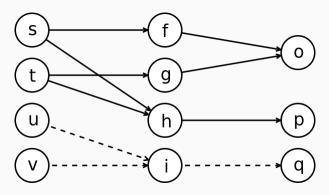


Figure 10: Independence example

Satisfaction of the axioms

• Those are the important axioms. Are they satisfied by actual truth discovery algorithms? We looked at *Voting* and *Sums* ³

	Voting	SC-Voting	Sums	U-Sums
Coherence	Х	Х	\checkmark	\checkmark
Symmetry	\checkmark	\checkmark	\checkmark	\checkmark
Mon.	\checkmark	\checkmark	Х	?
POI	\checkmark	\checkmark	Х	х
Str. Indep	\checkmark	\checkmark	Х	Х
Indep.	\checkmark	Х	Х	\checkmark

Table 1: Satisfaction of the axioms for the various operators

\cdot We conjecture that the ? is a \checkmark

³Jeff Pasternack and Dan Roth. 2010. Knowing What to Believe (when You Already Know Something).

Conclusion and future work

- So far...
 - We have developed a formal framework for truth discovery
 - · Stated axioms, inspired by work in social choice theory
 - Obtained an impossibility result and characterised Voting
 - Analysed Voting and Sums wrt the axioms
- Future work...
 - Extend the basic truth discovery model, e.g. to handle infinitely many facts, correlations between facts, incorporate prior knowledge
 - Deeper analysis of the axioms and their interactions
 - Key unanswered question: can we have Coherence, Symmetry, Monotonicity and Independence at the same time?