Truth Discovery – FTS talk

Joe Singleton

November 2019

- I'm Joe
- First year PhD
- Topic for now is truth discovery
- This talk is preparation for a seminar feedback welcome
- Feel free to ask questions throughout

- · Lots of information is available today, from many different sources
 - The web
 - Social media platforms (Twitter, Facebook, ...)
 - Crowdsourcing systems
- People often *disagree* with what is true. Who should we trust in this case, and what should we believe?
- **Truth discovery:** find *true facts* and *trustworthy data sources* when faced with conflicting information.

- $\cdot\,$ Background and context to the problem
- Existing work in this area
- My (preliminary) work:
 - How is it different?
 - What have I actually done?

- $\cdot\,$ Background and context to the problem
- Existing work in this area
- My (preliminary) work:
 - How is it different?
 - What have I actually done?

Setting the scene

- Information can be collected from *data sources*
 - Websites
 - Individuals
 - Crowdsourcing participants
 - Sensors
- A piece of information relates to an object
 - A real-world entity or question
 - E.g. How much does the UK send to the EU per week? What will the temperature be in Cardiff tomorrow?
- · Different sources can provide different 'facts' for the same object
 - Conflicting statistics
 - Much conflict over 'facts' in politics
 - Low-quality sensors
- Can result from poor or incomplete knowledge, or deliberate misinformation

Example

• fullfact.org is an 'independent fact checking charity'

A Contract of the figures behind this estimate are uncertain or based on flawed assumptions.	by ty he ha	WWW WARD CALLED WHAT WARD CALL	y MP Viter	<text><text><text><text><text><text><text></text></text></text></text></text></text></text>

Figure 1: fullfact.org screenshot

Setting the scene (II)

- Even assuming fact-checkers are available, are they themselves to be trusted?
- Need automatic methods for finding true information
- Naive approach: take the information claimed by the most sources, i.e. perform a *vote*
- Will this work? Things to consider...
 - Large number of people today are claiming vaccines are harmful
 - A study investigated the spread of news on Twitter¹: "Falsehood diffused significantly farther, faster, deeper, and more broadly than the truth in all categories of information"
 - Some websites copy content from each other

¹Soroush Vosoughi, Deb Roy, and Sinan Aral. "The spread of true and false news online". In: Science 359.6380 (2018)

- Trouble with voting is that all sources are equally weighted
- It would be better to use *trust* information
 - Trustworthy sources are given more weight
 - Won't get misled by an untrustworthy majority
- Central goals of truth discovery:
 - Identify *trustworthy sources* and *believable facts*, such that trustworthy sources claim believable facts and vice versa

- The notion of trust is extremely important in daily life
- Trust has been studied in the social sciences, but does not have an agreed upon formal definition
- Some authors distinguish between between trust, reputation and reliability²
- Trust in daily life is often *personalised*
 - \cdot Trustworthiness is in the eye of the beholder

²Mohammad Momani and Subhash Challa. "Survey of trust models in different network domains". In: CoRR abs/1010.0168 (2010).

What does it mean to be trustworthy? (II)

- In contrast, truth discovery methods often seek a *global* notion of trustworthiness
- Different interpretations of trustworthiness exist in the truth discovery literature:
 - Probabilistic interpretation
 - Weights in optimisation-based methods
 - Heuristics
- Note: measures of trust are not comparable between algorithms

- $\cdot\,$ Background and context to the problem
- \cdot Existing work in this area
- My (preliminary) work:
 - How is it different?
 - What have I actually done?

Existing work

- Resolving conflicts in information is not new
 - *Data fusion* considers how to combine data from multiple sources, including conflict resolution
 - *Belief revision* considers how to update existing beliefs based on new (possibly conflicting) information
- Truth discovery is distinguished by its consideration of trustworthiness
- Many algorithms proposed in recent years
 - Mostly *unsupervised*: no ground truths for objects, and no known trustworthiness values
 - Mostly *iterative*: compute trust and belief scores iteratively until convergence

Example algorithm: Sums

- Perhaps one of the simplest algorithms is Sums
- Assigns each source s a sequence of *trust scores* $(T_n(s))_{n \in \mathbb{N}}$, and each fact f a sequence of *belief scores* $(T_n(f))_{n \in \mathbb{N}}$.
- Initially all scores are 0.5
- Update algorithm is as follows:
 - For each source s:

$$\cdot T_{n+1}(s) \leftarrow \sum_{f \in facts(s)} T_n(f)$$

• For each fact *f*:

$$\cdot$$
 $T_{n+1}(f) \leftarrow \sum_{s \in src_n(f)} T_{n+1}(s)$

- Divide each trust and belief score by the maximum
- Repeat until convergence

- Background and context to the problem
- Existing work in this area
- My (preliminary) work:
 - · How is it different?
 - What have I actually done?

Potential issues with existing work

- Lots of good algorithms, *but...*
- Many algorithms are somewhat opaque difficult to see what the algorithm is actually *doing*
- Have to be evaluated empirically: run on a test dataset and compute accuracy
- This can make it difficult to compare algorithms:
 - Accuracy calculation depends on the dataset used
 - Algorithms may perform better or worse on different datasets
- Would be useful to have some theory behind truth discovery
 - Understand what they are doing by looking at theoretical properties
 - Make more principled comparisons
 - Deeper understanding of the problem (eventually...)

- Theoretical analysis has been done for related problems in *social choice*
- Social choice: aggregate the preferences of multiple agents in a 'fair' way to form a social preference
 - e.g. voting: how can votes be aggregated to choose the winner of an election?
 - In our case, aggregating claims from multiple sources
- The axiomatic approach is popular in social choice
 - Formulate *axioms* which describe intuitively desirable properties of voting rules
 - E.g. if everyone votes for the same person, they should be elected

The axiomatic method

- Can evaluate and compare algorithms by checking which axioms are satisfied
- · Common goals are impossibility results and characterisation results
- E.g. voting has Arrow's Impossibility Theorem
 - Three seemingly good axioms cannot hold at the same time
 - Highlights fundamental problem with voting
- E.g. Altman and Tennenholtz ³ characterised PageRank from Google
 - A ranking system coincides with PageRank iff it satisfies these axioms...
- · Idea: can we give truth discovery an axiomatic treatment?

³Alon Altman and Moshe Tennenholtz. 2005. Ranking systems: the PageRank axioms.

- $\cdot\,$ Background and context to the problem
- Existing work in this area
- My (preliminary) work:
 - How is it different?
 - · What have I actually done?

- Applying axiomatic approach to truth discovery
- Defined formal framework
- Formulated some axioms
- Had a look at some existing algorithms against my axioms

The framework: what is the input to the truth discovery?

- I consider a very basic form of truth discovery
- \cdot We have a finite set of sources ${\mathcal S}$, facts ${\mathcal F}$ and objects ${\mathcal O}$
- Input to the problem (the dataset) is called a *truth discovery network*, and is defined as a graph

Figure 2: Example network

Representing input as a graph is already common in the literature

From the paper...

Definition

A truth discovery network is a directed graph N = (V, E) where $V = S \cup F \cup O$, and $E \subseteq (S \times F) \cup (F \times O)$ has the following properties:

- 1. For each $f \in \mathcal{F}$ there is a unique $o \in \mathcal{O}$ with $(f, o) \in E$, denoted $\operatorname{obj}_{N}(f)$. That is, each fact is associated with exactly one object.
- 2. For $s \in S$ and $o \in O$, there is at most one directed path from s to o. That is, sources cannot claim multiple facts for a single object.
- 3. $(\mathcal{S} imes \mathcal{F}) \cap$ *E* is non-empty. That is, at least one claim is made.

We will say that s claims f when $(s, f) \in E$. Let \mathcal{N} denote the set of all TD networks.

The framework: what is the output?

- Most algorithms give output as numeric trust scores and belief scores
- Since scores are not comparable across algorithms, we are only concerned with the *ranking* that is induced by the scores
- Output should be therefore be a pair of rankings:
 - Source ranking tells us who is more trustworthy
 - Fact ranking tells us which fact is *more believable*
- In the previous example, Sums gives the rankings

s < u = v < tf = h < g < i

• Algorithms are represented in the framework as functions, and are called *truth discovery operators*

From the paper...

Notation

For a set X, let $\mathcal{L}(X)$ denote the set of all total preorders on X, i.e. the set of transitive, reflexive and complete binary relations on X.

Definition

A truth discovery operator T is a mapping $T : \mathcal{N} \to \mathcal{L}(\mathcal{S}) \times \mathcal{L}(\mathcal{F})$. We shall write $T(N) = (\sqsubseteq_N^{\tau}, \preceq_N^{\tau})$, i.e. \sqsubseteq_N^{τ} is a total preorder on \mathcal{S} and \preceq_N^{τ} is a total preorder on \mathcal{F} .

- The framework provides the definitions required to formally state axioms
- Most axioms adapted from social choice
- I will only mention the important ones...

- Recall that axioms are supposed to represent intuitive *desirable properties* of operators
- A key principle of truth discovery is that trustworthy sources make believable claims, and vice versa
- The trust and belief rankings need to cohere in this sense
- This idea is hard to pin down in general, but we can do so in specific cases...

Coherence (II)

Figure 3: Coherence motivating example

- $\cdot\,$ This idea comes from axiomatic analysis of ranking systems under the name transitivity 4
- We consider this the most important axiom

⁴Alon Altman and Moshe Tennenholtz. 2008. Axiomatic Foundations for Ranking Systems

Definition

Let *T* be a TD operator, *N* be a TD network and *Y*, $Y' \subseteq \mathcal{F}$. We shall say *Y* is *less believable* than *Y'* with respect to *N* and *T* if there is a bijection $\phi : Y \to Y'$ such that $f \preceq_N^T \phi(f)$ for each $f \in Y$, and $\hat{f} \prec_N^T \phi(\hat{f})$ for some $\hat{f} \in Y$.

For $X, X' \subseteq S$ we define X less trustworthy than X' with respect to N and T in a similar way.

Axiom (Coherence)

For any network N, facts_N(s₁) less believable than facts_N(s₂) implies $s_1 \sqsubset_N^T s_2$, and $\operatorname{src}_N(f_1)$ less trustworthy than $\operatorname{src}_N(f_2)$ implies $f_1 \prec_N^T f_2$.

Symmetry

- Rankings should depend on the *structure* of the network, not the *names* of sources and facts
- Consider swapping s with t and h with i:

- The structure is the same in each case, just different labels
- We should have s $\sqsubseteq_N t$ iff $t \sqsubseteq_{N'} s$ and $h \preceq_N i$ iff $i \preceq_{N'} h$
- · Prevents operators being biased towards or against particular sources

Definition

Two TD networks N and N' are *equivalent* if there is a graph isomorphism π between them that preserves sources, facts and objects, i.e., $\pi(s) \in S$, $\pi(f) \in \mathcal{F}$ and $\pi(o) \in \mathcal{O}$ for all $s \in S, f \in \mathcal{F}$ and $o \in \mathcal{O}$. In such case we write $\pi(N)$ for N'.

Axiom (Symmetry) Let N and N' = $\pi(N)$ be equivalent networks. Then for all $s_1, s_2 \in S$, $f_1, f_2 \in \mathcal{F}$, we have $s_1 \sqsubseteq_N^T s_2$ iff $\pi(s_1) \sqsubseteq_{N'}^T \pi(s_2)$ and $f_1 \preceq_N^T f_2$ iff $\pi(f_1) \preceq_{N'}^T \pi(f_2)$.

Monotonicity

- We don't want Voting, but more support is better in some sense...
- If *f* is at least as believable as *g* and extra support for *f* comes in, *f* becomes *strictly* more believable

Figure 4: Monotonicity motivating example

Axiom (Monotonicity) Suppose $N \in \mathcal{N}$, $s \in \mathcal{S}$, $f \in \mathcal{F} \setminus \text{facts}_N(s)$. Write E for the set of edges in N, and let N' be the network in which s claims f; i.e. the network with edge set

$$E' = \{(s,f)\} \cup E \setminus \{(s,g) : g \neq f, \operatorname{obj}_N(g) = \operatorname{obj}_N(f)\}$$

Then for all $g \neq f, g \preceq_N^T f$ implies $g \prec_{N'}^T f$.

• Notion of *independence* is important: the ranking of a source/fact should only depend on the stuff that is relevant to it

Figure 5: Independence motivating example

• e.g. are *u* and *v* relevant to s?

Per-object Independence (POI)

- First stab at independence, obtained by translating social choice (esp. voting) versions of independence
- If facts and sources for object o are the same in N and N', the ranking of o's facts is the same

Axiom

Let $o \in \mathcal{O}$ and write $\operatorname{obj}_{N}^{-1}(o) \subseteq \mathcal{F}$ for the set of facts for o in a network N. Suppose N_1 , N_2 are networks such that $F_o = \operatorname{obj}_{N_1}^{-1}(o) = \operatorname{obj}_{N_2}^{-1}(o)$ and $\operatorname{src}_{N_1}(f) = \operatorname{src}_{N_2}(f)$ for each $f \in F_o$. Then the restrictions of $\preceq_{N_1}^T$ and $\preceq_{N_2}^T$ to F_o are equal; that is, $f_1 \preceq_{N_1}^T f_2$ *iff* $f_1 \preceq_{N_2}^T f_2$ for all $f_1, f_2 \in F_o$.

- POI means we cannot use inter-object links
- With Symmetry and Monotonicity, this is very bad: it implies *Voting* behaviour within the facts for each object

Theorem

Let T be any operator satisfying Symmetry, Monotonicity and POI.

Then for any network N, object o and facts f, g for o, we have

 $f \preceq_N^T g iff |\operatorname{src}_N(f)| \le |\operatorname{src}_N(g)|$

 Note: It is possible to strengthen POI – to what I call Strong Independence – to get Voting-like behaviour for any two facts: we have found an axiomatic characterisation of Voting

- Remember Coherence is our key axiom, which Voting fails
- Symmetry, Monotonicity and POI imply Voting-like behaviour
- Symmetry, Monotonicity, POI and Coherence? No

Theorem

There is no operator satisfying Coherence, Symmetry, Monotonicity and POI.

• Counterexample is shown below

Figure 6: Counterexample used in the proof

• As far as we know, this is the first impossibility result for truth discovery

Final Independence axiom

- POI is not desirable since it rules out using indirect links
- Our final version of independence is very weak: two nodes are relevant to each other if there is a path between them, i.e. if they are in the same *connected component* of the graph

Figure 7: Independence example

Axiom (Independence) For any TD networks N_1 , N_2 with a common connected component G, the restrictions of $\sqsubseteq_{N_1}^T$ and $\sqsubseteq_{N_2}^T$ to $G \cap S$ are equal, and the restrictions of $\preceq_{N_2}^T$ and $\preceq_{N_2}^T$ to $G \cap \mathcal{F}$ are equal; that is, $s_1 \sqsubseteq_{N_1}^T s_2$ iff $s_1 \sqsubseteq_{N_2}^T s_2$ and $f_1 \preceq_{N_1}^{\mathsf{T}} f_2$ iff $f_1 \preceq_{N_2}^{\mathsf{T}} f_2$ for $s_1, s_2 \in \mathsf{G} \cap \mathcal{S}$ and $f_1, f_2 \in \mathsf{G} \cap \mathcal{F}$.

• Those are the important axioms. Are they satisfied by actual truth discovery algorithms?

	Voting	SC-Voting	Sums	U-Sums
Coherence	Х	Х	\checkmark	\checkmark
Symmetry	\checkmark	\checkmark	\checkmark	\checkmark
Mon.	\checkmark	\checkmark	Х	?
POI	\checkmark	\checkmark	Х	Х
Indep.	\checkmark	Х	Х	\checkmark

Table 1: Satisfaction of the axioms for the various operators

- Thanks for listening
- Questions?