Truth-Tracking with Non-Expert Information Sources

Joe Singleton and Richard Booth singletonj1@cardiff.ac.uk

Overview

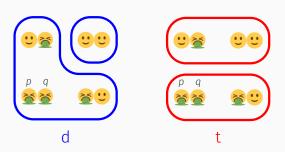
- Problem: what can we learn from non-expert information sources?
- · We aim to learn both:
 - the true facts of the world
 - the true level of expertise of the sources
- We adapt the learning framework from recent work combining formal learning theory, belief revision and epistemic logic
- · Main results:
 - description of what can be learned
 - · characterisation of truth-tracking learning methods

Overview

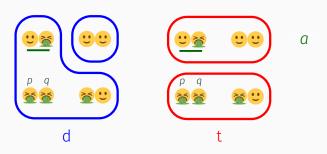
- Problem: what can we learn from non-expert information sources?
- · We aim to learn both:
 - the true facts of the world
 - the true level of expertise of the sources
- We adapt the learning framework from recent work combining formal learning theory, belief revision and epistemic logic
- · Main results:
 - description of what can be learned
 - · characterisation of truth-tracking learning methods
- Warning: Still preliminary work! Strong assumptions on the input the learning method receives 1.

- · Patient a is checked for conditions p and q
- Doctor d has expertise to determine whether whether a has at least one condition, but needs a blood test to tell which one(s)
- Tests are only available for p: tech t has expertise on p but not q

- Patient a is checked for conditions p and q
- Doctor d has expertise to determine whether whether a has at least one condition, but needs a blood test to tell which one(s)
- Tests are only available for p: tech t has expertise on p but not q
- We model expertise with partitions of states: sources cannot distinguish states in the same cell



- Patient a is checked for conditions p and q
- Doctor d has expertise to determine whether whether a has at least one condition, but needs a blood test to tell which one(s)
- Tests are only available for p: tech t has expertise on p but not q
- We model expertise with partitions of states: sources cannot distinguish states in the same cell



- Patient a is checked for conditions p and q
- Doctor d has expertise to determine whether whether a has at least one condition, but needs a blood test to tell which one(s)
- Tests are only available for p: tech t has expertise on p but not q
- We model expertise with partitions of states: sources cannot distinguish states in the same cell

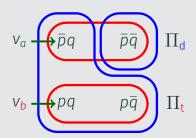


Logical framework for expertise

Basic framework

- \mathcal{P} : finite set of propositional variables (e.g. p, q, ...)
- \mathcal{S} : finite set of sources (e.g. d, t, ...)
- C: finite set of cases (e.g. a, b, ...)
- · Valuation: $v: \mathcal{P} \to \{0, 1\}$
- A world is a pair $W = (\{\Pi_i\}_{i \in \mathcal{S}}, \{v_c\}_{c \in \mathcal{C}})$, where
 - · Each Π_i is a partition of the set of valuations
 - Each v_c is a valuation

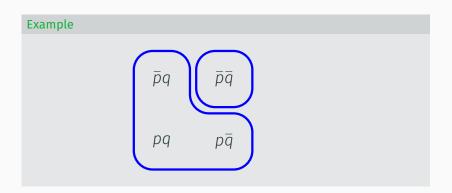
Example



- i has expertise on φ if i can always determine the correct value of φ :

$$W \models E_i \varphi \iff (u \in \operatorname{mods}(\varphi) \implies \Pi_i[u] \subseteq \operatorname{mods}(\varphi))$$

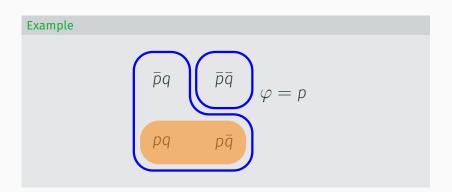
· φ states always distinguishable from $\neg \varphi$ states



- i has expertise on φ if i can always determine the correct value of φ :

$$W \models E_i \varphi \iff (u \in \operatorname{mods}(\varphi) \implies \Pi_i[u] \subseteq \operatorname{mods}(\varphi))$$

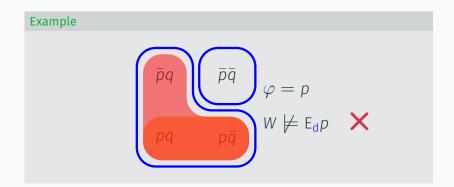
· φ states always distinguishable from $\neg \varphi$ states



• i has expertise on φ if i can always determine the correct value of φ :

$$W \models E_i \varphi \iff (u \in \operatorname{mods}(\varphi) \implies \Pi_i[u] \subseteq \operatorname{mods}(\varphi))$$

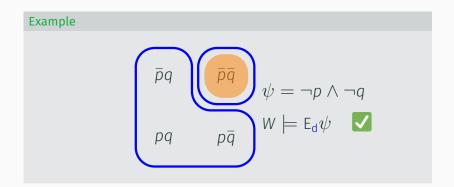
· φ states always distinguishable from $\neg \varphi$ states



• *i* has expertise on φ if *i* can always determine the correct value of φ :

$$W \models E_i \varphi \iff (u \in \operatorname{mods}(\varphi) \implies \Pi_i[u] \subseteq \operatorname{mods}(\varphi))$$

· φ states always distinguishable from $\neg \varphi$ states



• *i* has expertise on φ if *i* can always determine the correct value of φ :

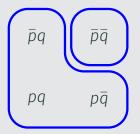
$$W \models E_i \varphi \iff (u \in \operatorname{mods}(\varphi) \implies \Pi_i[u] \subseteq \operatorname{mods}(\varphi))$$

- · φ states always distinguishable from $\neg \varphi$ states
- $\cdot \varphi$ is **permissible** for *i* if φ is true up to lack of expertise of *i*

$$W, c \models P_i \varphi \iff \Pi_i[v_c] \cap \operatorname{mods}(\varphi) \neq \emptyset$$

- true state indistinguishable from some φ state

Example



• *i* has expertise on φ if *i* can always determine the correct value of φ :

$$W \models E_i \varphi \iff (u \in \operatorname{mods}(\varphi) \implies \Pi_i[u] \subseteq \operatorname{mods}(\varphi))$$

- · φ states always distinguishable from $\neg \varphi$ states
- $\cdot \varphi$ is **permissible** for *i* if φ is true up to lack of expertise of *i*

$$W, c \models P_i \varphi \iff \Pi_i[v_c] \cap \operatorname{mods}(\varphi) \neq \emptyset$$

- true state indistinguishable from some φ state

Example $V_a \xrightarrow{\bar{p}q} \bar{p}\bar{q}$ $\varphi = p$ $pq \qquad p\bar{q}$

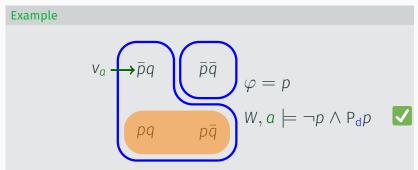
• *i* has expertise on φ if *i* can always determine the correct value of φ :

$$W \models E_i \varphi \iff (u \in \operatorname{mods}(\varphi) \implies \Pi_i[u] \subseteq \operatorname{mods}(\varphi))$$

- · φ states always distinguishable from $\neg \varphi$ states
- $\cdot \varphi$ is **permissible** for *i* if φ is true up to lack of expertise of *i*

$$W, c \models P_i \varphi \iff \Pi_i[v_c] \cap \operatorname{mods}(\varphi) \neq \emptyset$$

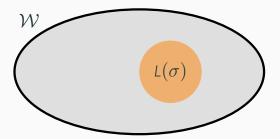
- true state indistinguishable from some φ state



Learning and truth-tracking

Reports and methods

- We receive reports of the form $\langle i,c,\varphi \rangle$
 - "source i reports φ in case c"
- A learning method L maps a finite sequence σ to a conjecture $L(\sigma) \subseteq \mathcal{W}$, where \mathcal{W} is the set of all worlds



Example

$$L(\sigma) = \{ W \mid \forall \langle i, c, \varphi \rangle \in \sigma, W, c \models P_i \varphi \}$$

Streams

- We assume sources report all they consider possible
 - · All reports are permissible: only false due to lack of expertise
 - All permissible reports eventually appear

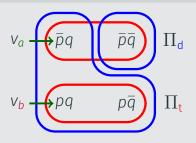
Streams

- · We assume sources report all they consider possible
 - · All reports are permissible: only false due to lack of expertise
 - All permissible reports eventually appear
- Warning: Strong assumptions! Sources are always honest, and do not distinguish permissibility with beliefs or knowledge

Streams (cont'd)

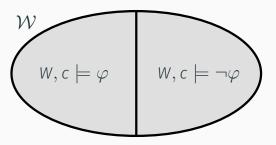
- An infinite sequence of reports ho is a stream for a world W if

$$\langle i, c, \varphi \rangle \in \rho \iff W, c \models P_i \varphi$$

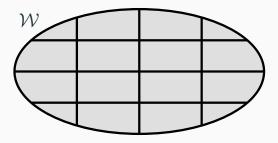


$$\rho = (\langle \mathsf{d}, a, p \lor q \rangle, \langle \mathsf{d}, a, p \rangle, \langle \mathsf{d}, a, q \rangle, \langle \mathsf{d}, a, \neg p \rangle, \langle \mathsf{d}, a, \neg q \rangle, \langle \mathsf{d}, a, p \land q \rangle, \ldots)$$

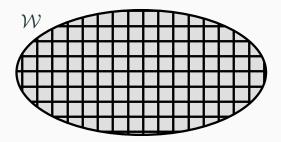
- We want to design methods $\it L$ which learn $\it W$ when fed a stream $\it
 ho$
- Finding W exactly is too much to ask
- · A question Q is a partition of ${\mathcal W}$
 - $Q_{\varphi,c}$: does φ hold in case c?



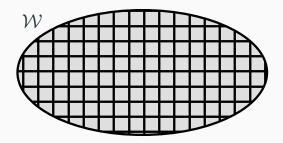
- We want to design methods ${\it L}$ which learn ${\it W}$ when fed a stream ho
- Finding W exactly is too much to ask
- · A question Q is a partition of ${\mathcal W}$
 - $Q_{\varphi,c}$: does φ hold in case c?
 - \cdot Q_{val} : what are the correct valuations? (ignoring partitions)



- We want to design methods ${\it L}$ which learn ${\it W}$ when fed a stream ho
- Finding W exactly is too much to ask
- · A question Q is a partition of ${\mathcal W}$
 - $Q_{\varphi,c}$: does φ hold in case c?
 - \cdot Q_{val} : what are the correct valuations? (ignoring partitions)
 - · $Q_{\perp} = \{\{W\} \mid W \in \mathcal{W}\}$: what is the actual world?



- \cdot We want to design methods $\it L$ which learn $\it W$ when fed a stream $\it
 ho$
- Finding W exactly is too much to ask
- · A question Q is a partition of ${\mathcal W}$
 - $Q_{\varphi,c}$: does φ hold in case c?
 - \cdot Q_{val} : what are the correct valuations? (ignoring partitions)
 - · $Q_{\perp} = \{\{W\} \mid W \in \mathcal{W}\}$: what is the actual world?
 - Q[W] is the correct answer at W



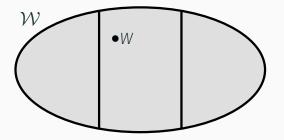
• L solves Q if given any stream, L eventually finds the correct answer

$$\forall W, \forall \rho$$
 a stream for W, $\exists n \text{ s.t } \forall m \geq n, L(\rho_1 \cdots \rho_m) \subseteq Q[W]$

· Q is solvable if there is a consistent method L which solves Q

• L solves Q if given any stream, L eventually finds the correct answer $\forall W, \forall \rho$ a stream for W, $\exists n \text{ s.t } \forall m \geq n, L(\rho_1 \cdots \rho_m) \subseteq Q[W]$

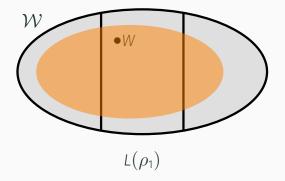
· Q is solvable if there is a consistent method L which solves Q



• L solves Q if given any stream, L eventually finds the correct answer

$$\forall W, \forall \rho$$
 a stream for W, $\exists n \text{ s.t } \forall m \geq n, L(\rho_1 \cdots \rho_m) \subseteq Q[W]$

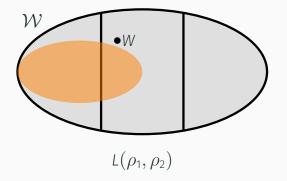
· Q is solvable if there is a consistent method L which solves Q



• L solves Q if given any stream, L eventually finds the correct answer

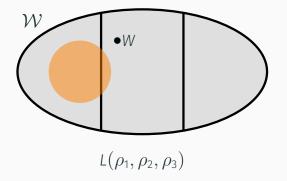
$$\forall W, \forall \rho$$
 a stream for W, $\exists n \text{ s.t } \forall m \geq n, L(\rho_1 \cdots \rho_m) \subseteq Q[W]$

· Q is solvable if there is a consistent method L which solves Q



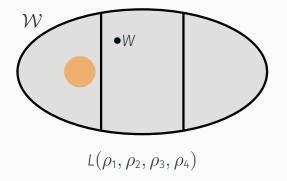
• L solves Q if given any stream, L eventually finds the correct answer $\forall W, \forall \rho$ a stream for W, $\exists n \text{ s.t } \forall m \geq n, L(\rho_1 \cdots \rho_m) \subseteq Q[W]$

· Q is solvable if there is a consistent method L which solves Q



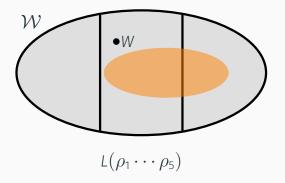
• L solves Q if given any stream, L eventually finds the correct answer $\forall W, \forall \rho$ a stream for W, $\exists n \text{ s.t } \forall m \geq n, L(\rho_1 \cdots \rho_m) \subseteq Q[W]$

Q is solvable if there is a consistent method L which solves Q



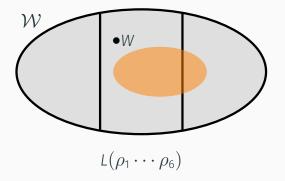
• L solves Q if given any stream, L eventually finds the correct answer $\forall W, \forall \rho$ a stream for W, $\exists n \text{ s.t } \forall m \geq n, L(\rho_1 \cdots \rho_m) \subseteq Q[W]$

· Q is solvable if there is a consistent method L which solves Q



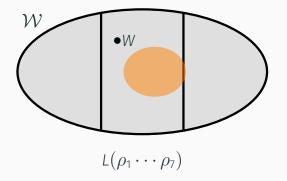
• L solves Q if given any stream, L eventually finds the correct answer $\forall W, \forall \rho$ a stream for W, $\exists n \text{ s.t } \forall m \geq n, L(\rho_1 \cdots \rho_m) \subseteq Q[W]$

Q is solvable if there is a consistent method L which solves Q



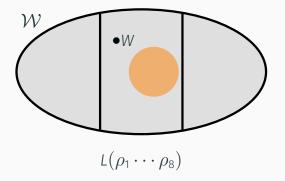
• L solves Q if given any stream, L eventually finds the correct answer $\forall W, \forall \rho$ a stream for W, $\exists n \text{ s.t } \forall m \geq n, L(\rho_1 \cdots \rho_m) \subseteq Q[W]$

Q is solvable if there is a consistent method L which solves Q



• L solves Q if given any stream, L eventually finds the correct answer $\forall W, \forall \rho$ a stream for W, $\exists n \text{ s.t } \forall m \geq n, L(\rho_1 \cdots \rho_m) \subseteq Q[W]$

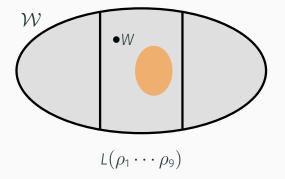
· Q is solvable if there is a consistent method L which solves Q



Solvability

• L solves Q if given any stream, L eventually finds the correct answer $\forall W, \forall \rho$ a stream for W, $\exists n \text{ s.t } \forall m \geq n, L(\rho_1 \cdots \rho_m) \subseteq Q[W]$

Q is solvable if there is a consistent method L which solves Q

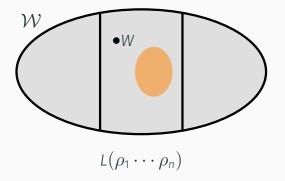


13

Solvability

• L solves Q if given any stream, L eventually finds the correct answer $\forall W, \forall \rho$ a stream for W, $\exists n \text{ s.t } \forall m \geq n, L(\rho_1 \cdots \rho_m) \subseteq Q[W]$

· Q is solvable if there is a consistent method L which solves Q



What can be learned?

Solvable questions

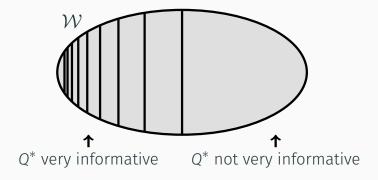
- · Which questions are solvable?
- It turns out there is a question Q* which is the unique hardest solvable question

$$W \sim^* W' \iff \forall i \in \mathcal{S}, c \in \mathcal{C}, \Pi_i^W[v_c^W] = \Pi_i^{W'}[v_c^{W'}]$$

- Equivalently, W and W' have exactly the same streams
- \cdot $\mathit{Q}_{arphi,\mathsf{c}}$ is only solvable when arphi is a tautology or contradiction old X
- \cdot Q_{val} , Q_{\perp} not solvable X
- Problem: if source have no expertise at all, all reports are permissible.
 True valuations don't matter!

Solvable questions (cont'd)

- Solution: investigate what $Q^*[W]$ tells us about W



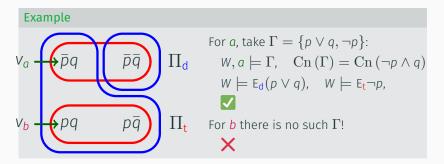
- A property of W is learnable if all $W' \in Q^*[W]$ share the same property
 - Any method solving Q^* eventually finds it

What can be learned?

Theorem

The true c-valuation is learnable at W iff there is a set Γ st

- 1. $W, c \models \Gamma$
- 2. $\operatorname{Cn}\left(\Gamma\right)$ is a maximally consistent set
- 3. For all $\varphi \in \Gamma$, there is $i \in \mathcal{S}$ such that $W \models E_i \varphi$



· Similar result for partitions (omitted)

Truth-tracking methods

A characterisation of truth-tracking

- · We have so far only looked solvable questions
- · Which methods actually solve them?
- L is truth-tracking if it solves all solvable questions
 - Equivalently, L solves Q*
- We characterise truth-tracking axiomatically, given three basic properties:
 - Equivalence: if $\sigma \equiv \delta$ then $L(\sigma) = L(\delta)$
 - Repetition: $L(\sigma \cdots \sigma) = L(\sigma)$
 - Permissibility: if $W \in L(\sigma)$ then $W, c \models P_i \varphi$ for all $\langle i, c, \varphi \rangle \in \sigma$

A characterisation of truth-tracking (cont'd)

• Let T_{σ} be the set of worlds W such that, for all $\langle i, c, \varphi \rangle$:

$$W, c \models P_i \varphi \iff \exists \psi \equiv \varphi \text{ s.t } \langle i, c, \psi \rangle \in \sigma$$

- \cdot i.e. σ contains all permissible reports, up to logical equivalence
- Write $U, c \models \varphi$ iff $W, c \models \varphi$ for all $W \in U$
- Credulity: if T_{σ} , $c \not\models P_{i}\varphi$ then $L(\sigma)$, $c \models \neg P_{i}\varphi$

Theorem

For a method L satisfying Equivalence, Repetition and Permissibility,

Truth-tracking ← Credulity

Credulity

- Credulity: if $T_{\sigma}, c \not\models P_{i}\varphi$ then $L(\sigma), c \models \neg P_{i}\varphi$
- More expertise means fewer permissible reports
- Credulity is a principle of maximal trust
 - Whenever consistent with T_{σ} , we should trust i to have expertise to rule out φ
 - Since all permissible reports eventually received, mistaken trust can be retracted
- Consequence: truth-tracking is not possible deductively; inductive reasoning is required
- Stronger property in terms of expertise directly: if $T_{\sigma} \not\models \neg E_i \varphi$ then $L(\sigma) \models E_i \varphi$

Conclusion

Summary and future work

· Summary:

- Developed a logical framework to reason about expertise and permissible reports
- · Expressed a learning problem in this setting
- · Characterised conditions under which information can be learned
- Axiomatically characterised truth-tracking learning methods

· Future work:

- · Assumptions on streams are very strong! Can these be lifted?
- · Everything is finite. What results carry over to the infinite case?
- · Bridge with probabilistic reasoning?

An example method

- Intuition: express credulity with a prior plausibility ordering over worlds
- Conjecture the maximally plausible worlds consistent with permissibility statements
- E.g. using the number of partition cells as a measure of expertise:

$$L(\sigma) = \underset{W \in X_{\sigma}}{\operatorname{argmax}} \sum_{i \in \mathcal{S}} |\Pi_{i}^{W}|$$

where
$$X_{\sigma} = \{ W \mid \forall \langle i, c, \varphi \rangle \in \sigma, W, c \models P_i \varphi \}$$

· This method is truth-tracking!