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ABSTRACT
The problem of truth discovery, i.e., of trying to find the true facts

concerning a number of objects based on reports from various infor-

mation sources of unknown trustworthiness, has received increased

attention recently. The problem is made interesting by the fact that

the relative believability of facts depends on the trustworthiness

of their sources, which in turn depends on the believability of the

facts the sources report. Several algorithms for truth discovery have

been proposed, but their evaluation has mainly been performed

experimentally by computing accuracy against large datasets. Fur-

thermore, it is often unclear how these algorithms behave on an

intuitive level. We develop a general framework for truth discov-

ery which allows comparison and evaluation of algorithms based

instead on their theoretical properties. To do so we pose truth dis-

covery as a social choice problem, and formulate various axioms
that any reasonable algorithm should satisfy. Along the way we

provide an axiomatic characterisation of the baseline ‘Voting’ al-

gorithm – which leads to an impossibility result showing that a

certain combination of the axioms cannot hold simultaneously –

and check which axioms some well-known existing algorithms

satisfy. We find that, surprisingly, our more fundamental axioms do

not hold, and propose modifications to the algorithms to partially

fix these problems.
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1 INTRODUCTION
There is an increasing amount of data available in today’s world,

particularly from the web, social media platforms and crowdsourc-

ing systems. The openness of such platforms makes it simple for

a wide range of users to share information quickly and easily, po-

tentially reaching a wide international audience. It is inevitable

that amongst this abundance of data there are conflicts, where data
sources disagree on the truth regarding a particular object or entity.

This can be caused by low-quality sources mistakenly providing

erroneous data, or by malicious sources aiming to misinform.

Resolving such conflicts and determining the true facts is there-

fore an important task. Truth discovery has emerged as a set of

techniques to achieve this by considering the trustworthiness of
sources [11, 14]. The general principle is that true facts are those

claimed by trustworthy sources, and trustworthy sources are those

that claim believable facts. Application areas include real-time traf-

fic navigation [8], drug side-effect discovery [17], crowdsourcing

and social sensing [16, 20, 27].
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Figure 1: Illustrative example of a dataset to which truth dis-
covery can be applied with sources {s, t ,u,v}, facts { f ,д,h, i}
and objects {o,p}.

For a simple example of a situation where trust can play an

important role, consider Fig. 1 which shows data sources, ‘facts’ and

objects from left to right. Suppose object p represents the question

‘how much money does the UK send to the EU per week?’, for

this particular question has certainly had at least two answers put

forward recently, and suppose object o represents another matter

such as ‘what is the current stock price for Google?’. Without

considering trust information, the stock price question seems to be

a tie, with both options f and д receiving one vote from sources s
and t respectively.

Taking a trust-aware approach, however, we can look beyond

object o to consider the trustworthiness of s and t . Indeed, when it

comes to object p, t agrees with two extra sources u and v , whereas
s disagrees with everyone. In principle there could be hundreds
of extra sources here instead of just two, in which case the effect

would be even more striking. We may conclude that s is less trust-
worthy than t . Returning to o, we see that д is supported by a more

trustworthy source, and conclude that it should be accepted over f .
Many truth discovery algorithms have been proposed in the liter-

ature with a wide range of techniques used, e.g. iterative heuristic-

based methods [10, 18], probabilistic models [24], maximum likeli-

hood estimation and optimisation-basedmethods [15]. It is common

for such algorithms to be evaluated empirically by running them

against some large dataset for which the true facts are already

known; this allows accuracy and other metrics to be calculated, and

permits comparison between algorithms. This may be accompanied

by some theoretical analysis, such as calculating run-time com-

plexity [11], proving convergence of an iterative algorithm [25], or

proving convergence to the ‘true’ facts under certain assumptions

on the distribution of source trustworthiness [21, 22].

A limitation of this kind of analysis is that the results apply only

to a single algorithm (or class of algorithm) due to the assumptions

made. In this work we aim to take a more general view and study

truth discovery without reference to any specific methodology or

probabilistic framework. To do so we note the similarities between

truth discovery and related problems such as judgment aggregation

[9], voting theory [30] ranking and recommendation systems [1–

3, 19] in which the axiomatic approach of social choice has been

successfully applied.

https://doi.org/doi


AAMAS’20, May 2020, Auckland, New Zealand Paper #1015

In taking the axiomatic approach one aims to formulate axioms
that encode intuitively desirable properties that an algorithm may

possess. The interaction between these axioms can then be studied;

typical results include impossibility results, where it is shown that

a set of axioms cannot hold simultaneously, and characterisation
results, where it is shown that a set of axioms are uniquely satis-

fied by a particular algorithm. Such analysis facilitates principled

comparison between algorithms based on intuitive behaviour, in

contrast to the somewhat opaque accuracy scores that result from

empirical evaluation.

With this in mind we develop a general framework for truth dis-

covery in which axioms can be formulated, and go on to give both

an impossibility result and an axiomatic characterisation of a base-

line voting algorithm. We also analyse an existing truth discovery

algorithm, Sums [18], with respect to the axioms.

The paper is organised as follows. The next section informally

outlines our framework and axioms. The formal definitions for

the framework are then given in Sect. 2. Sect. 3 provides examples

of truth discovery algorithms from the literature expressed in the

framework. In Sect. 4 we formally introduce the axioms and present

an impossibility result showing a subset of these cannot all be

satisfied simultaneously. The examples of Sect. 3 are then revisited

in Sect. 5, where we analyse them with respect to the axioms and

propose modifications to satisfy some axioms that fail. Finally we

provide closing remarks and directions for future work in Sect. 6.

We note that proofs are omitted from the paper due to space

limitations, and are instead made available online at https://bit.ly/

2qg7syf

1.1 Overview of the framework and results
In this section we provide a high-level summary of the framework

and our key axioms and results. We only aim to sketch the ideas

behind the concepts at this stage, and refer the reader to sections

2 and 4 for the formal definitions. This style of presentation is

inspired by [3].

The input to a truth discovery problem (termed a truth discovery
network) is modelled as a directed tripartite graph whose nodes

consist of sources, facts and objects. Fig. 1 provides an example,

with sources, facts and objects shown from left to right. We model

the output of the truth discovery process as a pair (⊑, ⪯), where ⊑

is an ordering of the sources and ⪯ an ordering of the facts. We take

s1 ⊑ s2 to mean s2 is ranked at least as trustworthy as s1; similarly

f1 ⪯ f2 means f2 is ranked at least as believable as f1.
The axioms are summarised below. Example networks in which

the axioms apply are shown in Fig. 2.

Coherence: The two rankings ⊑ and ⪯ should cohere with one

another in the following sense: if the sources for two facts f1, f2
can be paired up in such a way that the sources for f1 are less trust-
worthy than those for f2, then f2 should be seen as more believable

than f1. Conversely, if the facts for a source s1 are pairwise less
believable than those for s2, then s2 should be seen as the more

trustworthy source.

Symmetry: The rankings for isomorphic networks should them-

selves be isomorphic. That is, the rankings depend only on the

structure of the network and not on the ‘names’ of the sources,

facts and objects present.

Unanimity and Groundedness: Facts claimed by all sources

should rankmaximally (Unanimity), and facts claimed by no sources

should rank minimally (Groundedness).

Monotonicity: Increasing support for a fact f by adding a claim

from a new source should increase f ’s ranking relative to other

facts.

Independence axioms: The rankings of two sources s1, s2
should not be affected by ‘irrelevant’ details of the network that do

not concern s1 or s2 (and similarly for the rankings of facts).

Independence actually covers a range of axioms, with different

notions of ‘irrelevance’ leading to different axioms. In this paper we

consider three independence axioms, first using irrelevance criteria

inspired by equivalent axioms in social choice, and then adopting a

truth discovery-specific approach. We will show that the first two

of the resulting axioms lead to undesirable behaviour with regards

to the fact rankings, and are not compatible with Coherence.

2 A FRAMEWORK FOR TRUTH DISCOVERY
With an overview given in the previous section, we now define our

formal framework, which provides the key definitions required for

theoretical discussion and analysis of truth discovery methods.

We consider fixed finite and mutually disjoint sets S, F and O

throughout, called the sources, facts and objects respectively. All
definitions and axioms will be stated with respect to these sets.

2.1 Truth discovery networks
A core definition of the framework is that of a truth discovery
network, which represents the input to a truth discovery problem.

We model this as a tripartite graph with certain constraints on its

structure, in keeping with approaches taken throughout the truth

discovery literature [11, 24].

Definition 2.1. A truth discovery network (hereafter a TD network)
is a directed graph N = (V ,E) where V = S ∪ F ∪ O, and E ⊆

(S × F ) ∪ (F × O) has the following properties:

(1) For each f ∈ F there is a unique o ∈ O with (f ,o) ∈ E,
denoted objN (f ). That is, each fact is associated with exactly
one object.

(2) For s ∈ S and o ∈ O, there is at most one directed path from

s to o. That is, sources cannot claim multiple facts for a single

object.

(3) (S × F )∩E is non-empty. That is, at least one claim is made.

We will say that s claims f when (s, f ) ∈ E. Let N denote the set

of all TD networks.

Note that there is no requirement that a source makes a claim

for every object, or even that a source makes any claims at all.

This reflects the fact that truth discovery datasets are in practise

extremely sparse, i.e. each individual source makes few claims.

Conversely, we allow for facts that receive no claims from any

sources.

Also note that the object associated with a fact f is not fixed

across all networks. This is because we view facts as labels for
information that sources may claim, not the pieces of information

themselves. Similarly, we consider objects simply as labels for real-

world entities. Whilst a particular piece of information has a fixed

entity to which it pertains, the labels do not. For example, when

https://bit.ly/2qg7syf
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(a) (b) (c) (d)

Figure 2: Truth discovery networks where our axiomsmay be applied. a) Coherence: if s ⊑ u and t ⊏ v, then Coherence dictates
f ≺ д. b) Unanimity and Groundedness: f must rank maximally and д must rank minimally. c) Monotonicity: If д ⪯ f before
the dashed line is added, we must have д ≺ f afterwards. d) Independence: the addition or removal of the dashed edges should
not affect the relative rankings of s and t , nor the rankings of f , д and h.

implementing truth discovery algorithms in practise it is common

to assign integer IDs to the ‘facts’ and ‘objects’; the algorithm then

operates using only the integer IDs. In this case there is no reason to

require that fact 17 is always associated with object 4, for example,

and the same principle applies in our framework.

A special case of our framework is the binary case in which

every object has exactly two associated facts. This brings us close

to the setting studied in judgment aggregation [9] and, specifically

(since sources do not necessarily claim a fact associated to every

object) to the setting of binary aggregation with abstentions [6, 7].
In a network N , the implicit assumption is that, for each object

o, one of the facts in obj−1N (o) is the true fact associated with that

object. However we do not assume any constraints on the possible

configurations of true facts across different objects. That is, any
combination of facts is feasible. In judgment aggregation such an

assumption has the effect of neutralising the impossibility results

that arise in that domain (see, e.g., [6]). We shall see that that is not

the case in our setting.

To simplify the notation in what follows, for a network N =
(V ,E) we write factsN (s) = { f ∈ F : (s, f ) ∈ E} for the set of facts
claimed by a source s , and srcN (f ) = {s ∈ S : (s, f ) ∈ E} for the
set of sources claiming a fact f .

2.2 Truth discovery operators
Having defined the input to a truth discovery problem, the output

must be defined. Contrary to many approaches across the existing

truth discovery literature, we consider the output to be rankings of
the sources and facts. This is because we are primarily interested

in ordinal properties rather than quantitative values. Indeed, for the

theoretical analysis we wish to perform it is only important that

a source is more trustworthy than another; the particular numeric

scores produced by an algorithm are irrelevant.

Moreover, the scores produced by existing algorithm often have

no semantic meaning [18], and so referring to numeric values is

not meaningful when comparing across algorithms. In this case

it is only the rankings of sources and facts that can be compared,

which is further motivation for our choice. This point of view is

also common across the social choice literature.

For a set X , let L(X ) denote the set of all total preorders on X ,
i.e. the set of transitive, reflexive and complete binary relations on

X . We now define a truth discovery operator as a mapping from the

space of inputs to outputs.

Definition 2.2. An ordinal truth discovery operator T (hereafter

TD operator) is a mapping T : N → L(S) × L(F ). We shall write

T (N ) = (⊑TN , ⪯
T
N ), i.e. ⊑TN is a total preorder on S and ⪯TN is a total

preorder on F .

Intuitively, the relation ⊑TN is a measure of source trustworthiness
in the network N according to T , and ⪯TN is a measure of fact
believability. The notation ⊏TN and ≃TN will be used to denote the

strict order and symmetric closure induced by ⊑TN respectively. For

fact rankings, ≺TN and ≈TN are defined similarly.

Whilst rankings of sources and facts are a core component of our

framework, it is true that many existing truth discovery algorithms

do not produce rankings directly, but instead assign each source a

numeric trust score and each fact a belief score [10, 18, 24, 26, 28, 29].
This is captured in the following definition.

Definition 2.3. A numerical TD operator is a mapping T : N →

RS∪F , i.e.T assigns to each TD network N a functionT (N ) = TN :

S ∪ F → R. For s ∈ S, TN (s) is the trust score for s in the network

N according toT ; for f ∈ F ,TN (f ) is the belief score for f . The set
of all numerical TD operators will be denoted by TNum .

Note that any numerical operatorT naturally induces an ordinal

operator T̂ , where s1 ⊑T̂N s2 iff TN (s1) ≤ TN (s2), and f1 ⪯T̂N f2
iff TN (f1) ≤ TN (f2). Henceforth we shall write ⊑TN , ⪯TN without

explicitly defining the induced ordinal operator T̂ .
It is worth noting that yet other truth discovery algorithms

output neither rankings nor numeric scores for facts, but only a

single ‘true’ fact for each object [15]. This is also the approach taken

in judgment aggregation, where an aggregation rule selects which
formulas are to be taken as true. Such algorithms can be modelled

in our framework as numerical operators where TN (f ) = 1 for

each identified ‘true’ fact f , and TN (д) = 0 for other facts д. To go

in the reverse direction and obtain the ‘true’ facts according to an

operator, one may simply select the set of facts for each object that

rank maximally.

3 EXAMPLES OF TRUTH DISCOVERY
OPERATORS

Our framework is general enough to capture a wide range of oper-

ators that have been proposed in the truth discovery literature. In

this section we provide two concrete examples: Voting, which is a

simple approach commonly used as a baseline method, and Sums
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[18]. We go on to outline the class of recursive operators – of which

Sums is an instance – which contains many more examples from

the literature.

3.1 Voting
In Voting, we consider each source to cast ‘votes’ for the facts

they claim, and facts are ranked according to the number of votes

received. Clearly this method disregards the source trustworthiness

aspect of truth discovery, as a vote from one source carries as

much weight as a vote from any other. As such, Voting cannot be

considered a serious contender for truth discovery. It is nonetheless

useful as a simple baseline method against which to compare more

sophisticated operators.

Definition 3.1. Voting is the numerical operator defined as fol-

lows: for any network N ∈ N , s ∈ S and f ∈ F , TN (s) = 1 and

TN (f ) = |srcN (f )|.

Consider the network N shown in Fig. 1. Facts f ,д and h each

receive one vote, whereas i receives 3. The fact ranking induced by

Voting is therefore f ≈ д ≈ h ≺ i . On the other hand, all sources

receive a trust score of 1 and therefore rank equally.

3.2 Sums
Sums [18] is a simple and well-known operator adapted from the

Hubs and Authorities [12] algorithm for ranking web pages. The al-

gorithm operates iteratively and recursively, assigning each source

and fact a score for each n ∈ N; the final score is taken as the limit
of this sequence of scores.

Initially, scores are fixed at a constant value of 1/2. The trust

score for each source is then updated by summing the belief score of

its associated facts. Similarly, belief scores are updated by summing

the trust scores of the associated sources. To prevent these scores

from growing without bound as the algorithm iterates, the authors

normalise at each iteration by dividing each trust score by the

maximum across all sources (belief scores are normalised similarly).

Expressed in our framework, we have that ifT is the (numerical)

operator giving the scores at iteration n, then the pre-normalisation

scores at iteration n + 1 are given by T ′
, where

T ′
N (s) =

∑
f ∈factsN (s)

TN (f ); T ′
N (f ) =

∑
s ∈srcN (f )

T ′
N (s) (1)

Consider again the network N shown in Fig. 1. It can be shown

that, with T denoting the limiting scores from Sums with normali-

sation, we have TN (s) = 0, TN (t) = 1, and TN (u) = TN (v) =
√
2/2.

The induced ranking of sources is therefore s ⊏ u ≃ v ⊏ t .

For fact scores, we have TN (f ) = 0, TN (д) =
√
2 − 1, TN (h) = 0

and TN (i) = 1, so the ranking is f ≈ h ≺ д ≺ i . Note that fact д
fares better under Sums than Voting, due to its association with the

highly-trusted source t .

3.3 Recursive truth discovery operators
The iterative and recursive aspect of Sums is hoped to result in the

desired mutual dependence between trust and belief scores: namely

that sources claiming high-belief facts are seen as trustworthy, and

vice versa. In fact, this recursive approach is near universal across

the truth discovery literature (see for instance [8, 10, 15, 23, 28, 29]).

As such it is appropriate to identify the class of recursive operators
as an important subset of TNum . To make a formal definition we

first define an iterative operator.

Definition 3.2. An iterative operator is a sequence (Tn )n∈N of

numerical operators. An iterative operator is said to converge to a

numerical operatorT ∗
if limn→∞TnN (z) = T ∗

N (z) for all networksN
and z ∈ S ∪ F . In such case the iterative operator can be identified

with the ordinal operator induced by its limit T ∗
.

Note that it is possible that an iterative operator (Tn )n∈N con-

verges for only a subset of networks. In such case we can con-

sider (Tn )n∈N to converge to a ‘partial operator’ and identify it

with the induced partial ordinal operator; that is, a partial function

N → L(S) × L(F ).

Recursive operators can now be defined as those iterative opera-

tors where Tn+1 can be obtained from Tn alone.

Definition 3.3. An iterative operator (Tn )n∈N is said to be recur-
sive if there is a function U : TNum → TNum such that Tn+1 =
U (Tn ) for all n ∈ N.

In this context the mapping U : TNum → TNum is called the

update function, and the initial operator T 1
is called the prior op-

erator. For a prior operator T and update function U , we write

rec(T ,U ) for the associated recursive operator; that is, T 1 = T and

Tn+1 = U (Tn ).
Returning to Sums, we see that (1) defines a mapping TNum →

TNum and consequently an update functionU Sums
. The normal-

isation step can be considered a separate update function norm
which maps any numerical operator T to T ′

, where
1

T ′
N (s) =

TN (s)

max

x ∈S
|TN (x)|

, T ′
N (f ) =

TN (f )

max

y∈F
|TN (y)|

It can then be seen that Sums is the recursive operator rec(T F ixed , norm◦

U Sums ), where T F ixed
N ≡ 1/2.

Many other existing algorithms proposed in the literature can

also be realised as recursive operators in the framework, such as

Investment, PooledInvestment [18], TruthFinder [24], LDT [28] and

others. For brevity, we shall not define any more here.

4 AXIOMS FOR TRUTH DISCOVERY
Having laid out the formal framework, we now introduce axioms

for truth discovery. Each axiom encodes a theoretical property that

we believe any ‘reasonable’ operatorT should satisfy. Many axioms

are adapted from the social choice literature, althoughmodifications

are necessary in places to match the semantics of truth discovery.

Afterwards, we shall revisit the specific operators of the previous

section to check which axioms are satisfied.

4.1 Coherence
As mentioned previously, a guiding principle of truth discovery

is that sources claiming highly believed facts should be seen as

trustworthy, and that facts backed by highly trusted sources should

be seen as believable.

1
If maxx∈S |TN (x ) | = 0 then the above is ill-defined; we set T ′

N (s) = 0 for all s in
this case. Fact belief scores are defined similarly if the maximum is 0.
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Whilst this intuition is hard to write down formally, it is possible

to do so in particular cases where there are obvious means by which

to compare the set of facts for two sources (and vice versa). This

situation is considered in the axiomatic analysis of ranking and

reputation systems under the name transitivity [2, 19], and we

shall adapt it to truth discovery presently. First, some preliminary

definitions are required.

Definition 4.1. Let T be a TD operator, N be a TD network and

Y ,Y ′ ⊆ F . We shall say Y is less believable than Y ′
with respect to

N and T if there is a bijection ϕ : Y → Y ′
such that f ⪯TN ϕ(f ) for

each f ∈ Y , and ˆf ≺TN ϕ( ˆf ) for some
ˆf ∈ Y .

For X ,X ′ ⊆ S we define X less trustworthy than X ′
with respect

to N and T in a similar way.

In plain English, Y less believable than Y ′
means that the facts in

each set can be paired up in such a way that each fact inY ′
is at least

as believable as its counterpart in Y , and at least one fact in Y ′
is

strictly more believable. Now, consider a situation where factsN (s1)
is less believable than factsN (s2). In this case the intuition outlined

above tells us that s2 provides ‘better’ facts, and should thus be

seen as more trustworthy than s1. A similar idea holds if srcN (f1)
is less trustworthy than srcN (f2) for some facts f1, f2. We state this

formally as our first axiom.

Axiom1 (Coherence). For any networkN , factsN (s1) less believable
than factsN (s2) implies s1 ⊏TN s2, and srcN (f1) less trustworthy than
srcN (f2) implies f1 ≺TN f2.

Coherence can be broken down into two sub-axioms: Source-
Coherence, where the first implication regarding source rankings

is satisfied; and Fact-Coherence, where the second implication is

satisfied. We take Coherence to be a fundamental axiom for TD

operators.

4.2 Symmetry
Our next axiom requires that rankings of sources and facts should

not depend on their ‘names’, but only on the structure of the net-

work. To state it formally, we need a notion of when two networks

are essentially the same but use different names.

Definition 4.2. Two TD networksN andN ′
are equivalent if there

is a graph isomorphism π between them that preserves sources,

facts and objects, i.e., π (s) ∈ S, π (f ) ∈ F and π (o) ∈ O for all

s ∈ S, f ∈ F and o ∈ O. In such case we write π (N ) for N ′
.

Axiom2 (Symmetry). LetN andN ′ = π (N ) be equivalent networks.
Then for all s1, s2 ∈ S, f1, f2 ∈ F , we have s1 ⊑TN s2 iff π (s1) ⊑

T
N ′

π (s2) and f1 ⪯TN f2 iff π (f1) ⪯
T
N ′ π (f2).

In the theory of voting in social choice, Symmetry as above is

expressed as two axioms: Anonymity, where output is insensitive
to the names of voters, and Neutrality, where output is insensitive
to the names of alternatives [30]. Analogous axioms are also used

in judgment aggregation.

Correspondingly, Symmetry can by broken down into sub-axioms

where the above need only hold for a subset of permutations π sat-

isfying some condition: Source-Symmetry (where π must leave facts

and objects fixed) and Fact-Symmetry (where π leaves sources and

objects fixed). For truth discovery we have the additional notion of

objects and thus Object-Symmetry can defined similarly.

4.3 Fact ranking axioms
Next, we introduce axioms that dictate the ranking of particular

facts in cases where there is an ‘obvious’ ordering. Unanimity and

Groundedness express the idea that if all sources are in agreement

about the status of a fact, then an operator should respect this in its

verdict. Two obvious ways in which sources can be in agreement

are when all sources believe a fact is true, and when none believe a
fact is true.

Axiom 3 (Unanimity). Suppose N ∈ N , f ∈ F , and srcN (f ) = S.
Then for any other д ∈ F , д ⪯TN f .

Axiom 4 (Groundedness). Suppose N ∈ N , f ∈ F , and srcN (f ) =
∅. Then for any other д ∈ F , f ⪯TN д.

That is, f cannot do better than to be claimed by all sources when

T satisfies Unanimity, and cannot do worse than to be claimed by

none when T satisfies Groundedness.

Unanimity here is a truth discovery rendition of the same axiom

in judgment aggregation, and can also be compared to the weak
Paretian property in voting [5]. Groundedness is a version of the

same axiom studied in the analysis of collective annotation [13].

The next axiom is a basic monotonicity property, which states

that if f receives extra support from a new source s , then its ranking
should receive a strictly positive boost.

Axiom5 (Monotonicity). SupposeN ∈ N , s ∈ S, f ∈ F \factsN (s).
Write E for the set of edges in N , and let N ′ be the network in which
s claims f ; i.e. the network with edge set

E ′ = {(s, f )} ∪ E \ {(s,д) : д , f , objN (д) = objN (f )}

Then for all д , f , д ⪯TN f implies д ≺TN ′ f .

Note that Monotonicity does not imply anything about the rank-

ing of the source s .

4.4 Independence axioms
An important idea in social choice is that of independence. In voting,

this takes the form of Independence of Irrelevant Alternatives (IIA)

[4], which requires that the ranking of two alternatives A and B
depends only on the individual assessments of A and B, not on
some ‘irrelevant’ alternative C . That is, if the voter preferences are
changed such that the individual rankings of A versus B remain

unchanged, the social ranking ofA and B should remain unchanged.

To translate this principle into an axiom for truth discovery,

we need to decide which properties of a network N should be

considered relevant to the ranking of two facts (or two sources).

There is no canonical choice here, since the role of objects is unique

to truth discovery and can be handled in various ways.

We start by considering the case where facts f1, f2 relate to the

same object o. If one aims to construct an object-aware version of

IIA, it is reasonable to suggest that only the other facts for o, and
the sources claiming them, are relevant to the ranking of f1 and f2.
This leads to the following axiom.

Axiom 6 (Per-object Independence (POI)). Let o ∈ O. Suppose N1,
N2 are networks such that Fo = obj−1N1

(o) = obj−1N2

(o) and srcN1
(f ) =

srcN2
(f ) for each f ∈ Fo . Then the restrictions of ⪯TN1

and ⪯TN2

to Fo
are equal; that is, f1 ⪯TN1

f2 iff f1 ⪯TN2

f2 for all f1, f2 ∈ Fo .
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Whilst this axiom would make sense in a voting-like context

where there are no dependencies between objects, onemay question

whether it is truly a desirable property for truth discovery. Indeed,

the intuition behind our motivating example in Sect. 1 was that the

ranking of facts for object o was decided by the trustworthiness of

s and t , which in turn were decided based on their claims for object

p. However, POI excludes the possibility of using trust information

from claims for other objects.

It appears then that POI may force an operator to discard the

source-trustworthiness aspect of truth discovery, as we have seen

Voting does. It is clear that Voting satisfies POI, and in fact there

is also a relationship the other way around: POI forces Voting-like
behaviour within obj−1N (o) for each o ∈ O, when combined with

our less controversial requirements of Symmetry and Monotonic-

ity. We note that, for the special case of binary networks, similar

results have been shown in the literature on binary aggregation

with abstentions [6].

Theorem 4.3. Let T be any operator satisfying Symmetry, Mono-
tonicity and POI. Then for any N ∈ N , o ∈ O and f1, f2 ∈ obj−1N (o)

we have f1 ⪯TN f2 iff |srcN (f1)| ≤ |srcN (f2)|.

Proof (sketch). Wewill sketch the main ideas of the proof here

with some technical details omitted. Let N be a network, o be an
object and f1, f2 ∈ obj−1N (o). Consider modifying N by removing all

claims for objects other than o. By POI, we have f1 ⪯TN f2 iff f1 ⪯TN ′

f2. Since |srcN (fj )| = |srcN ′(fj )| also (j ∈ {1, 2}), it is sufficient for

the proof to show that f1 ⪯TN ′ f2 iff |srcN ′(f1)| ≤ |srcN ′(f2)|.

For the ‘if’ direction, first suppose |srcN ′(f1)| = |srcN ′(f2)|. Let
π be the permutationwhich swaps f1 with f2 and swaps each source
in srcN ′(f1) with one in srcN ′(f2); then we have π (N ′) = N ′

, and

Symmetry ofT gives f1 ≈
T
N ′ f2. In particular f1 ⪯TN ′ f2 as required.

Otherwise, |srcN ′(f2)|− |srcN ′(f1)| = k > 0. Consider N ′′
where

k sources from srcN ′(f2) are removed, and all other claims remain.

By Symmetry as above, f1 ≈
T
N ′′ f2. Applying Monotonicity k times

we can produce N ′
from N ′′

and get f1 ≺TN ′ f2 as desired.

For the ‘only if’ statement, suppose f1 ⪯TN ′ f2 but, for contra-
diction, |srcN ′(f1)| > |srcN ′(f2)|. Applying Monotonicity again as

above gives f1 ≻TN ′ f2 and the required contradiction.

□

Recall that Coherence formalises the idea that source-trustworthiness

should inform the fact ranking, and vice versa. Clearly Voting does

not conform to this idea, and in fact even the object-wise voting

patterns in Thm. 4.3 are incompatible with Coherence. This can

easily be seen in the network in Fig. 1 where, regarding object p,
we have |srcN (h)| < |srcN (i)| (hence h ≺TN i) and, regarding object

o, we have |srcN (f )| = |srcN (д)| (hence f ≈TN д). Hence factsN (s)
is less believable than factsN (t). If Coherence held this would give

s ⊏TN t , but then srcN (f ) is less trustworthy than srcN (д), giving

f ≺TN д – a contradiction. From this discussion and Thm. 4.3 we

obtain as a corollary the following first impossibility result for truth

discovery.

Theorem 4.4. There is no TD operator satisfying Coherence, Sym-
metry, Monotonicity and POI.

Given that Thm. 4.3 characterises the fact ranking of Voting
for facts relating to a single object, it is natural to ask if there is

a stronger form of independence that guarantees this behaviour

across all facts. As our next result shows, the answer is yes, and
the necessary axiom is obtained by ignoring the role of objects

altogether for fact ranking.

Axiom 7 (Strong Independence). For any networks N1,N2 and facts
f1, f2, if srcN1

(fj ) = srcN2
(fj ) for each j ∈ {1, 2} then f1 ⪯TN1

f2 iff

f1 ⪯TN2

f2.

That is, the ranking of two facts f1 and f2 is determined solely

by the sources claiming f1 and f2. In particular, the fact-object

affiliations and claims for facts other than f1, f2 are irrelevant when
deciding on f1 versus f2. We have the following result.

Theorem 4.5. Suppose |O| ≥ 3. Then an operator T satisfies
Strong Independence, Monotonicity and Symmetry if and only if for
any network N and f1, f2 ∈ F we have

f1 ⪯TN f2 ⇐⇒ |srcN (f1)| ≤ |srcN (f2)|

The proof of Thm. 4.5 is similar in spirit to that of Thm. 4.3, but

uses a different transformation to obtain a modified network N ′
in

the first step.

Clearly neither POI nor Strong Independence are satisfactory

axioms for truth discovery, and the notion of ‘irrelevance’ within a

network needs to be reconsidered. Fig. 1 can help us once again in

this regard. Whereas POI and Strong Independence would say that

facts h and i are irrelevant to f , the argument with Coherence for

Thm. 4.4 suggests otherwise due the indirect links via the sources.

We therefore propose that only when there is no (undirected) path

between two nodes can we consider them to be truly irrelevant to

each other. That is, nodes are relevant to each other iff they lie in

the same connected component of the network.2

Our final rendering of independence states that the ordering of

two facts in the same connected component does not depend on

any claims outside of the component, and similarly for sources.

Axiom 8 (Independence). For any TD networks N1, N2 with a com-
mon connected componentG , the restrictions of ⊑TN1

and ⊑TN2

toG∩S

are equal, and the restrictions of ⪯TN1

and ⪯TN2

to G ∩ F are equal;

that is, s1 ⊑TN1

s2 iff s1 ⊑TN2

s2 and f1 ⪯TN1

f2 iff f1 ⪯TN2

f2 for
s1, s2 ∈ G ∩ S and f1, f2 ∈ G ∩ F .

In analogy with Source/Fact Coherence and Source/Fact Sym-

metry, it is possible to split the two requirements of Independence

into sub-axioms Source-Independence and Fact-Independence.

5 SATISFACTION OF THE AXIOMS
With the axioms formally defined, we can now consider whether

they are satisfied by the example operators of Sect. 3. It will be seen

that neither Voting nor Sums satisfy all our desirable axioms, but

it is possible to modify each operator to gain some improvement

with respect to the axioms.

2
We have found that existing datasets with multiple connected components do in-

deed occur in practise; for example the Book and Restaurant datasets found at the

following web page each contain two connected components: http://lunadong.com/

fusionDataSets.htm

http://lunadong.com/fusionDataSets.htm
http://lunadong.com/fusionDataSets.htm
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5.1 Voting
Being the simplest operator, we will consider Voting first. The fol-

lowing theorem shows that all axioms except Coherence are satis-

fied. Since Coherence is a fundamental principle of truth discovery,

and we actually consider POI and Strong Independence to be unde-
sirable, this rules out Voting as a viable operator.

Theorem 5.1. Voting satisfies Symmetry, Unanimity, Ground-
edness, POI, Strong Independence, Independence and Monotonicity.
Voting does not satisfy Coherence.

Note that once Symmetry, Monotonicity and POI are shown,

the fact that Voting fails Coherence follows from our impossibility

result (Thm. 4.4), and Fig. 1 serves as an explicit counterexample.

5.2 Sums
Next we look towards Sums. Coherence and the simpler axioms are

satisfied here, and the undesirable independence axioms are not.

However, Monotonicity and Independence do not hold. Since Inde-
pendence is one of our most important axioms that we expect any

reasonable operator to satisfy, this potentially limits the usefulness

of Sums in practise.

Theorem 5.2. Sums satisfies Coherence, Symmetry, Unanimity
and Groundedness. Sums does not satisfy POI, Strong Independence,
Independence or Monotonicity.

Figure 3: Network which yields counterexamples for POI,
Strong Independence, Independence and Monotonicity for
Sums.

Fig. 3 shows a network from which counterexamples for POI,

Strong Independence, Independence and Monotonicity can be ob-

tained. In this network the lower connected component is ‘dense’, in

the sense that each source xi claims all facts in the component, and

each fact yj is claimed by all sources in the component. Moreover,

sources elsewhere in the network claim fewer facts than the xi , and
facts elsewhere are claimed by fewer sources than the yj .

Since scores are obtained by a simple sum, this results in the

scores for the xi and yj dominating those of the other sources

and facts. The normalisation step then divides these scores by the

(comparatively large) maximum. As the next result shows, under

certain conditions this causes scores to decrease exponentially and

become 0 in the limit. In particular, we can generate examples

such as Fig. 3 where a whole connected component receives scores

of 0 in the limit, which leads to failure of Monotonicity and the

independence axioms.

Lemma 5.3. Let N be a network. Suppose there is X ⊆ S, Y ⊆ F

such that factsN (x) = Y for each x ∈ X and srcN (y) = X for
each y ∈ Y . Additionally suppose that for each s ∈ S \ X we have
factsN (s) ∩ Y = ∅ and |factsN (s)| ≤ |Y |/2, and that for each f ∈

F \ Y we have srcN (f ) ∩ X = ∅ and |srcN (f )| ≤ |X |/2. Then, with
(Tn )n∈N denoting Sums, TnN (s) ≤ 2

1−n and TnN (f ) ≤ 2
1−n for all

s ∈ S \ X , f ∈ F \ Y and n > 1.

In the case of the network N in Fig. 3, we get that f ≈T
∗

N д.
Letting N ′

denote the network containing claims from the top

connected component only, each of POI, Strong Independence and

Independence would imply f ⪯T
∗

N д iff f ⪯T
∗

N ′ д. However, it is

easily seen that T ∗
N ′(f ) = 1 > 0 = T ∗

N ′(д), so д ≺T
∗

N ′ f – this

contradicts each of the independence axioms.

For Monotonicity, consider removing the edge (u,д) from N

to obtain N ′′
. Applying the above lemma, we get f ≈T

∗

N ′′ д; in

particular, f ⪯T
∗

N ′′ д. Monotonicity would therefore imply that

f ≺T
∗

N д, but we have seen that this is not true.

5.3 Modifying Voting and Sums
So far we have seen that neither of the basic operators Voting or

Sums are completely satisfactory with respect to the axioms of

section 4. Armed with the knowledge of how and why certain

axioms fail, one may wonder whether it is possible to modify the

operators accordingly so that the axioms are satisfied. Presently we
shall show that this is partially possible both in the case of Voting
and Sums.

5.3.1 Voting. A core problem with Voting is that it fails Coher-

ence. Indeed, all sources are ranked equally regardless of the ‘votes’

for facts, so in some sense it is obvious that the two rankings do

not cohere with each other. An easy improvement is to ensure the

rankings cohere in at least one direction: we can aim for Source-
Coherence by constructing the source rankings based on the fact

ranking of Voting.

Definition 5.4. For a network N , define a binary relation ◁N
on S by s1 ◁N s2 iff factsN (s1) is less-believable than factsN (s2)
with respect to Voting. The numerical operator SC-Voting (Source-

Coherence Voting) is defined by

T SCV
N (s) = |{t ∈ S : t ◁N s}|, T SCV

N (f ) = |srcN (f )|

It is easily seen that SC-Voting has Source-Coherence (although

not Fact-Coherence; e.g. consider Fig. 1), which is a significant

improvement over regular Voting. Since ◁N relies on ‘global’ prop-

erties on N , however, this unfortunately comes at the expense of

Source-Independence. Satisfaction of the other axioms is inherited

from Voting.

Theorem 5.5. SC-Voting satisfies Source-Coherence, Symmetry,
Unanimity, Groundedness, Monotonicity, Fact-independence, POI and
Strong Independence. It does not satisfy Fact-Coherence or Source-
Independence.

We note at this stage that the idea behind SC-Voting can be

generalised beyond Voting: it is possible to define ◁N in terms of
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any operator T , and to construct a new operator T ′
whose source

ranking is given according to ◁N as above, and whose fact ranking

coincides with that ofT . This ensuresT ′
satisfies Source-Coherence

whilst keeping the existing fact ranking from T .
Moreover we can go in the other direction and ensure Fact-

Coherence whilst retaining the source ranking of T by defining a

relation ◀N on F in a analogous manner to ◁N , and proceeding

similarly.

5.3.2 Sums. Our main concern with Sums is the failure of Inde-
pendence and Monotonicity. We have seen that this is some sense

caused by the normalisation step: in Fig. 3 the scores of s, t ,u etc go

to 0 in the limit after dividing the ‘global’ maximum score across

the network, which happens to come from a different connected

component.

A natural fix for Independence is to therefore divide by the

maximum score within each component. In this case the score for a

source s depends only on the structure of the connected component

in which it lies, which is exactly what is required for Independence.

However, this approach does not negate the undesirable effects

of lemma 5.3. Indeed, suppose the network in Fig. 3 was modified so

that fact y1 is associated with object o instead of p1. Clearly lemma

5.3 still applies after this change, and all sources and facts shown

now belong to the same connected component. Therefore the ‘per-

component Sums’ operator gives the same result as Sums itself,
and in particular our Monotonicity counterexample still applies.

Perhaps even worse, one can show that Coherence fails for this

operator. We consider the loss of Coherence too high a price to pay

for Independence.

Instead, let us take a step back and consider why and if normal-

isation is necessary. On the one hand, without normalisation the

trust and belief scores are unbounded and therefore do not con-

verge. On the other, we are not interested in the numeric scores for

their own sake, but rather for the rankings that they induce. It may

be possible that whilst the scores diverge without normalisation,

the induced rankings do converge to a fixed one, which we may

take as the ‘ordinal limit’. This is in fact the case.

Definition 5.6. UnboundedSums is the recursive operator

rec(T Pr ior ,U Sums ) where T Pr ior
N (s) = 1, T Pr ior

N (f ) = |srcN (f )|

andU Sums
is defined as in Sect. 3.2.

3

Theorem 5.7. UnboundedSums is ordinally convergent, in the
sense that there is an ordinal operator T ∗ such that for each network
N there exists JN ∈ N such that TnN (s1) ≤ TnN (s2) iff s1 ⊑T

∗

N s2 for
all n ≥ JN and s1, s2 ∈ S (and similarly for facts).

That is, the rankings on S and F in N are given by T ∗ after JN
iterations.

With the normalisation problems aside, UnboundedSums pro-
vides an example of a principled operator satisfying our two key

axioms: Coherence and Independence. We conjecture that Mono-

tonicity is also satisfied, but this remains to be proven.

Theorem 5.8. UnboundedSums satisfies Coherence, Symmetry,
Unanimity, Groundedness and Independence. UnboundedSums does
not satisfy POI and Strong Independence.
3
Note that to simplify proof of ordinal convergence we use a different prior operator

to Sums, but this does not effect the operator in any significant way.

Voting SC-Voting Sums U-Sums

Coherence X X ✓ ✓
Symmetry ✓ ✓ ✓ ✓
Unanimity ✓ ✓ ✓ ✓
Ground. ✓ ✓ ✓ ✓
Mon. ✓ ✓ X ?

POI ✓ ✓ X X
Str. Indep ✓ ✓ X X
Indep. ✓ X X ✓

Table 1: Satisfaction of the axioms for the various operators.

To summarise this section, Table 1 shows which axioms are

satisfied by each of the operators.

6 CONCLUSION
In this paper we formalised a mathematical framework for truth

discovery which is applicable to many algorithms in the literature.

This provided the setting for the axiomatic methods of social choice

to be applied. To our knowledge, this is the first such axiomatic

treatment in this context.

It was possible to adapt many axioms from social choice theory

and related areas. In particular, the transitivity axiom studied in the

context of ranking systems [2, 19] took on new life in the form of

Coherence, which we consider a core axiom for TD operators.

We proceeded to provide an impossibility result and an axiomatic

characterisation of the baseline Voting method, before turning to

more practical matters and analysing the existing TD algorithm

Sums. We found that, surprisingly, it fails Independence. This is a

serious issue for Sums which has not been discussed in the litera-

ture to date, and its discovery here highlights the benefits of the

axiomatic method. To resolve this, we suggested a modification to

Sums for which Independence is satisfied.
A restriction of our analysis is that only one ‘real-world’ algo-

rithm was considered. Further axiomatic analysis of algorithms

provides a deeper understanding of how algorithms operate on an

intuitive level, but is made difficult by the complexity of the state-of-

the-art truth discovery methods. New techniques for establishing

the satisfaction (or otherwise) of axioms would be helpful in this

regard.

There is also scope for extensions to our model of truth discov-

ery in the framework itself. For example, we make the somewhat

simplistic assumption that there are a fixed finite number of avail-

able sources, objects and facts. Regarding sources, this is at odds

with the overwhelming number of individuals and devices that may

participate in truth discovery, which is for all practical purposes

infinite. For facts, it means we can only consider categorical values;

modelling an object whose true fact is a real number, for example,

is not straightforward in our framework.

Finally, our model does not account for any associations or con-

straints between objects, whereas in reality the belief in a fact for

one object may strengthen or weaken our belief in other facts for

related objects. These types of constraints or correlations have been

studied both on the theoretical side (e.g. in judgment aggregation)

and practical side in truth discovery [23].
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